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Abstract. Let X1, . . . , Xn, n ≥ 1, be independent identically distributed (i.i.d.) Rd valued
random variables with a smooth density function f . We discuss how to use these X ′s to
estimate the gradient flow line of f connecting a point x0 to a local maxima point (mode)
based on an empirical version of the gradient ascent algorithm using a kernel estimator based
on a bandwidth h of the gradient ∇f of f. Such gradient flow lines have been proposed to
cluster data. We shall establish a uniform in bandwidth h result for our estimator and
describe its use in combination with plug in estimators for h.

Index Terms : gradient lines, density estimation, nonparametric clustering, uniform in band-
width

1 Introduction

Let f be a differentiable density on Rd. Assuming that f is known, consider the following
iterative scheme. Fix a > 0 and, starting at x0 ∈ Rd, define iteratively the gradient ascent
method

x` = x`−1 + a∇f(x`−1), for ` ≥ 1.

When it exists, define x∞ = lim`→∞ x`. The rationale behind this iterative gradient ascent
scheme is to have the sequence (x` : ` ≥ 0) converge to a local maxima point (mode) of f
— representing a cluster center.

In fact, one can use this scheme to cluster a set of data by assigning to each observation the
nearest mode along the direction of the gradient at the observation point (Fukunaga and

Hostetler [7]), where ∇f is replaced by an estimator ∇f̂ based on the data. This is close in
spirit to Hartigan [9].

In practice, the underlying density f is rarely known and has to be estimated using a kernel
density estimator. Let Φ : Rd → R be a kernel function — an integrable function satisfying
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∫
Rd Φ(x)dx = 1 — and for a bandwidth 0 < h ≤ 1, let Φh(u) = h−dΦ(u/h). The corre-

sponding kernel estimator of f based on a random sample X1, . . . , Xn, i.i.d. with density f ,
is

f̂n,h(x) :=
1

n

n∑
i=1

Φh(x−Xi), (1)

and if Φ is differentiable, then we estimate the gradient of f by the kernel type estimator

∇f̂n,h(x) :=
1

nh

n∑
i=1

∇Φh(x−Xi).

We shall establish a general uniform in bandwidth h result in a sense to be soon made precise
in Section 2 for the sequence of estimators beginning with x̂0 = x0

x̂` = x̂`−1 + a∇f̂n,h(x̂`−1), for ` ≥ 1.

Before we can do this we must first establish some notation and state two general results.

1.1 Two general results

Let g : Rd → R be differentiable. Starting at x0 ∈ Rd, we study the convergence as a→ 0 of
the sequence

x` = x`−1 + a∇g(x`−1), for ` ≥ 1, (2)

towards the gradient ascent line of g starting at x0. In particular, we characterize the limit
x∞, providing a consistency result for the clustering algorithm based on the local maxima
point of g. Then, given another differentiable function ĝ, meant to approximate g, we
compare the sequence (x`) to (x̂`), where

x̂` = x̂`−1 + a∇ĝ(x̂`−1), for ` ≥ 1, (3)

starting at the same point x̂0 = x0. In particular, when estimating the gradient ascent lines
of a density f based on a sample X1, . . . , Xn, ĝ can be taken to be some kernel estimator f̂
of f .

Recall that a critical point of g is a point x∗ at which the gradient of g vanishes, that is,
such that ∇g(x∗) = 0. A flow line or integral curve of the positive gradient flow of g is a
curve x such that

x′(t) = ∇g(x(t)). (4)

Note that, along any flow line, the value of g increases, that is, the function t 7→ g(x(t)) is
increasing with t. By the theory of ordinary differential equation, through any point x0 ∈ Rd

passes a unique flow line x(t) defined for t ∈ [0, t0), where t0 > 0, such that x(0) = x0 (see
Section 7.2 of Hirsch et al. [10]); we say that x(t) is the flow line starting at x0. Let x? be a
critical point of g. We say that x0 is in the attraction basin of x? if the flow line x(t) starting
at x0 is defined for all t ≥ 0 and limt→∞ x(t) = x?. An accumulation point of a sequence of
points through an integral curve x(t), i.e., a sequence of the form {x(tn) : t1 < t2 < . . . },
tn → ∞, is called a limit point of x(t). Any limit point of a gradient flow line of g is
necessarily a critical point of g.
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We start by stating a general result by Arias-Castro et al. [1] (also see [2]) who established
the convergence of the gradient ascent scheme (2) towards the flow lines of the underlying
function g. Starting from a point x0 in the attraction basin of an isolated local maxima point
x?, under some conditions stated below, the iteration (2) converges to x?. By an isolated
local maxima point x? we mean that for all ε > 0 small enough the open ball of radius
ε around x?, B (x?, ε), contains no local maxima point other than x?. We will show that
in fact, the polygonal line defined by the sequence (x`) is uniformly close to the flow line
starting at x0 and ending at x?.

Theorem 1 (Convergence of gradient ascent method) Let g be a function of class
C3. Let (x(t) : t ≥ 0) denote the flow line of g starting at x0 and ending at an isolated
local maxima point x? of g. Let (x`) be the sequence defined in (2) starting at x0. Then there
exists A = A(x0, g) > 0 such that, whenever a < A,

lim
`→+∞

x` = x?. (5)

Denote by xa(t) the following polygonal line

xa(t) = x`−1 + (t/a− `+ 1)(x` − x`−1), ∀t ∈ [(`− 1)a, `a).

Assume Hg(x
?) has all eigenvalues in (−ν,−ν) for some 0 < ν < ν. Then, there exists a

C0 = C(x0, g, ν, ν) > 0 such that, for any 0 < a < A,

sup
t≥0
‖xa(t)− x(t)‖ ≤ C0a

δ, with δ := ν/ (ν + ν) . (6)

Next, we state a version of a stability result of [1] for flows of smooth functions. Under some
conditions, when g and ĝ are close as C2 functions, then their flow lines are also close. First
we need some notation.

For a function ϕ : Rd → R, we let ϕ(`)(x), ` ≥ 1, denote the differential form of ϕ of order `
at a point x ∈ Rd, and let Hϕ(x) denote the Hessian matrix of ϕ evaluated at x when they
exist. The differential form ϕ(`)(x) of ϕ at x is the multilinear map from Rd × · · · × Rd (`
times) to R defined for ` ≥ 1 by

ϕ(`)(x)[u1, . . . , u`] =
d∑

i1,...,i`=1

∂`ϕ(x)

∂xi1 . . . ∂xi`
u1,i1 . . . u`,i` ,

where, for each 1 ≤ i ≤ `, ui has components ui = (ui,1, . . . , ui,d). We write

ϕ(0)(x) = ϕ(x), x ∈ Rd.

Given a multilinear map L of order ` ≥ 1 from Rd × · · · × Rd to R, which we write as

L[u1, . . . , u`] =
d∑

i1,...,i`=1

Li1,...,i`u1,i1 . . . u`,i` .
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we denote by ‖L‖ its operator norm defined by

‖L‖ = sup {|L[u1, . . . , u`]| : ‖u1‖ = · · · = ‖u`‖ = 1} . (7)

Note that when ` = 1, ‖L‖ =
√∑d

i=1 L
2
i , and when ` = 2

‖L‖ = sup
‖u‖=‖v‖=1

|v′Lu| = sup
‖u‖=1

|Lu| ,

where L is the d × d matrix {Li,j : 1 ≤ i, j ≤ d}, (cf. page 7 of Bhatia [3]), which implies
that for any x ∈ Rd

|Lx| ≤ ‖L‖‖x‖. (8)

When ` = 0 we set ‖L‖ = |L|.
We denote by ‖L‖max the norm defined by

‖L‖max = max{|Li1...i` | : 1 ≤ i1, . . . , i` ≤ d}. (9)

We note for future reference that easy calculations show that

‖L‖max ≤ ‖L‖ ≤ d
`
2‖L‖max. (10)

For a set S ⊂ Rd, we define
κ`(ϕ, S) = sup

x∈S

∥∥ϕ(`)(x)
∥∥ . (11)

Note that κ`(ϕ, S) is well-defined and is finite when ϕ is of class C` and S is compact.
The upper level set of a function ϕ : Rd → R at b ∈ R is defined as

Lϕ(b) = {x ∈ Rd : ϕ(x) ≥ b}. (12)

We suppress the dependence on ϕ whenever no confusion is possible. For any x ∈ Rd and
r > 0 denote the open ball

B (x, r) = {y : ‖x− y‖ < r}

and the closed ball
B (x, r) = {y : ‖x− y‖ ≤ r} .

Here is our stability result. It is a version of Theorem 2 of [1] designed to prove our uniform
in bandwidth result stated as Theorem 3 in the next section.

Theorem 2 (Stability of smooth flows) Suppose g and ĝ are of class C3. Let (x(t) : t ≥
0) be a flow line of g starting at x0, with g(x0) > 0, and ending at an isolated local maxima
point x? where Hg(x

?) has all eigenvalues in (−ν,−ν) for some 0 < ν < ν. Let x̂(t) be the
flow line of ĝ starting at x0. Let S = L(g(x0)/2) ∩B(x0, 3r0), where

r0 = max
t
‖x(t)− x0‖, (13)

and define
ηm = sup

x∈S
‖g(m)(x)− ĝ(m)(x)‖.
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Then for all D > 0 there exists a constant C := C(g, x0, ν, ν̄, D) ≥ 1 and a function
F (g, x0, ν, ν̄, 1/C,D) of D such that, whenever max{η0, η1, η2} ≤ 1/C and η3 ≤ D, x̂(t) is
defined for all t ≥ 0 and

sup
t≥0
‖x(t)− x̂(t)‖ ≤ F (g, x0, ν, ν̄, 1/C,D) max

{√
η0, η

δ
1

}
, (14)

where δ = ν/ (ν + ν).

Combining Theorems 1 and 2, we arrive at the following bound for approximating the flow
lines of a function g with the polygonal line obtained from the gradient ascent algorithm (3)
based on an approximation ĝ to g.

Corollary 1 In the context of Theorem 2, for a > 0, define

x̂a(t) = x̂`−1 + (t/a− `+ 1)(x̂` − x̂`−1), ∀t ∈ [(`− 1)a, `a), (15)

where (x̂`) is defined in (3). Then for all D > 0 there exists a constant C := C(g, x0, ν, ν̄, D) ≥
1 and a function F (g, x0, ν, ν̄, 1/C,D) of D such that, whenever max{η0, η1, η2} ≤ 1/C and
η3 ≤ D,

sup
t≥0
‖x̂a(t)− x(t)‖ ≤ F (g, x0, ν, ν̄, 1/C,D)

[
aδ + max

{√
η0, η

δ
1

}]
, (16)

where δ = ν/ (ν + ν).

In applications, the requirement that g(x0) > 0 can be sidestepped.

2 The estimation of gradient lines of a density

Let f̂n,h be the kernel density estimator of f in (1) with kernel Φ and bandwidth h. Sharp
almost-sure convergence rates in the uniform norm of kernel density estimators have been
obtained by several authors, for example Einmahl and Mason [5], Giné and Guillou [8],
Einmahl and Mason [6], Mason and Swanepoel [12] (also see [13]) and Mason [11].
We first state a bias bound from [1].

Lemma 1 Assume Φ is nonnegative, C3 on Rd with all partial derivatives up to order 3
vanishing at infinity, and satisfies∫

Rd
Φ(x)dx = 1,

∫
Rd
xΦ(x)dx = 0 and

∫
Rd
‖x‖2Φ(x)dx <∞. (17)

Then for any C3 density f on Rd with bounded derivatives up to order 3, there is a constant
C > 0 such that for all 0 ≤ ` ≤ 3

sup
x∈Rd

∥∥∥E[f̂ (`)
n,h(x)

]
− f (`)(x)

∥∥∥ ≤ Ch(3−`)∧2. (18)

Next, by applying the main result of [12] (also see [13] and Theorem 4.1 with Remark 4.2 in
[11]), [1] derive the following uniform in bandwidth result for f̂n,h and its derivatives.
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Lemma 2 Suppose that Φ is of the form Φ : (x1, . . . , xd) 7→
∏d

k=1 φk(xk), and that each
φk is nonnegative, integrates to 1, and is C3 on R with derivatives up to order 3 being of
bounded variation and in L1(Rd). Then, for any bounded density f on Rd, there exists a
0 < b0 < 1 such that almost surely

lim sup
n→∞

sup
logn
n
≤hd≤b0

sup
x∈Rd

√
nhd+2`

log n

∥∥∥f̂ (`)
n,h(x)− E

[
f̂
(`)
n,h(x)

]∥∥∥ <∞, ∀0 ≤ ` ≤ 3. (19)

It is straightforward to design a kernel that satisfies the conditions of Lemmas 1 and 2. In
fact, the Gaussian kernel Φ(x) = (2π)−d/2 exp(−‖x‖2/2) is such a kernel.

Theorem 3 Consider a density f satisfying the conditions of Lemma 1. Suppose f̂n,h is a
kernel estimator of f of the form (1), where Φ satisfies the conditions of Lemma 1 and 2.
Let (x(t) : t ≥ 0) be the flow line of f starting at a point x0 with f(x0) > 0, ending at
an isolated local maxima point x? where Hf (x

?) has all eigenvalues in (−ν,−ν) for some

0 < ν < ν. For a > 0, 0 < h ≤ 1 and n ≥ 1 define (x̂a(t, n, h) : t ≥ 0) as in (15) with f̂
taken as f̂n,h in (3). i.e. for t ∈ [(`− 1)a, `a), ` ≥ 1,

x̂`,n (h) = x̂`−1,n (h) + a∇f̂n,h(x̂`−1 (h)),

with x̂0,n (h) = x0. Suppose that

an → 0,
na

1+6/d
n

log n
→∞ and an < bn, with bn → 0, (20)

then there exists a constant C > 0 such that, with probability one, for all n large enough,
uniformly in an ≤ hd ≤ bn,

sup
t≥0
‖x̂a(t, n, h)− x(t)‖ ≤ C

(
aδ + h2δ

)
, (21)

where δ = ν/ (ν + ν) .

Remark Let
ĥn = Hn(X1, . . . , Xn)

be a bandwidth estimator so that with probability 1

ĥn → 0 and lim inf
n

ĥdn
an

> 0,

where an satisfies the conditions in (20). Notice that under the assumptions and notation
of Theorem 3 we have, with probability 1, for the plug in estimator x̂a(t, n, ĥn), for all large
enough n,

sup
t≥0
‖x̂a(t, n, ĥn)− x(t)‖ ≤ C

(
aδ + ĥ2δn

)
. (22)

For a general treatment of bandwidth selection and data-driven bandwidths consult Sections
2.3 and 2.4 of Deheuvels and Mason [4], as well as the references therein.
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3 Proofs of Theorem 2 and Theorem 3

To show the reader how all of these results fit together, we shall prove Theorem 3 first.

3.1 Proof of Theorem 3

As in the proof of Theorem 2 in the next subsection, we may assume without loss of generality
that Lg(f(x0/2) ⊂ B(x0, 3r0), with r0 = supt≥0 ‖x(t)− x0‖, which implies that L(f(x0/2) is
compact.

For any integer 0 ≤ ` ≤ 3, n ≥ 1 and 0 < h ≤ 1, let

η`,n (h) = sup
x∈S
‖f̂ (`)

n,h(x)− f `(x)‖,

where the norm used is defined in (7). From (18) and (19), we see from the triangle inequality
that for some constant A` > 0, uniformly in an ≤ hd ≤ bn, for all large n

η`,n (h) ≤ A`

(
h(3−`)∧2 +

√
log n

nhd+2`

)

≤ A`

(
b(3−`)∧2n +

√
log n

na
1+2`/d
n

)
.

It is easily checked using (20) that for any 0 ≤ ` ≤ 2

sup
an≤hd≤bn

η`,n (h)→ 0, a.s.,

while
lim sup
n→∞

sup
an≤hd≤bn

η3,n (h) ≤ A3, a.s.

Also one finds that uniformly in an ≤ hd ≤ bn for all large n for some constant B > 0

h(3−`)∧2 +

√
log n

nhd+2`
≤ Bh2, for ` = 0, 1.

Thus since δ < 1/2, uniformly in an ≤ hd ≤ bn for all n large enough,

max{
√
η0,n (h), ηδ1,n (h)} ≤ Ah2δ,

with A = max{
√
A0B, (A1B)δ}. We finish the proof by applying Corollary 1. �
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3.2 Proof of Theorem 2

Our proof will follow that of Theorem 2 of [1], however with some major modifications and
clarifications needed to obtain the present result. We shall require the following two lemmas,
which we state here without proof. They are respectively Lemma 5 and 6 of Theorem 2 of
[1].

Lemma 3 Suppose that g is of class C3. Let x? be an isolated local maxima point of g where
Hg(x

?) has all eigenvalues in (−ν,−ν) with ν > ν > 0. For ε > 0, let C(ε) be the connected
component of Lg(g(x?) − ε) that contains x?. Then there is a constant C3 = C3(g, x

?) such
that

B(x?,
√

(2ε/ν)) ⊂ C(ε) ⊂ B(x?,
√

2ε/ν), for all ε ≤ C3, (23)

and

g(x?)− g(x) ≤ ν

2
‖x− x?‖2, for all x such that ‖x− x?‖ ≤

√
C3/ν. (24)

Lemma 4 Suppose that g is of class C3. Let (x(t) : t ≥ 0) be the flow line of g starting at
x0 and ending at x? where Hg(x

?) has all its eigenvalues in (−∞,−ν), with ν > 0. Then,
there is C4 = C4(g, x0) such that, for all t ≥ 0,

‖x(t)− x?‖ ≤ C4e
−νt, (25)

and
g(x?)− g(x(t)) ≤ C4e

−2νt. (26)

The following, adapted from Hirsch et al. [10, Section 17.5], is a stability result for au-
tonomous gradient flows.

Lemma 5 Suppose ϕ and ψ are of class C1 and for a measurable subset S ⊂Rd

‖∇ϕ(x)−∇ψ(x)‖ < ε, ∀x ∈ S.

Let K be a Lipschitz constant for ∇ϕ on S. Let (x(t) : t ≥ t0) and (y(t) : t ≥ t0) with
t0 ≥ 0, be the flow lines of ϕ and ψ starting at x1 and y1, respectively, i.e. x(t0) = x1 and
y(t0) = y1, and

x′(t) = ∇ϕ(x(t)) and y′(t) = ∇ψ(y(t)), for t ≥ t0.

Assume that the flow lines x(t) and y(t) are in S. Then,

‖x(t)− y(t)− (x1 − y1) ‖ ≤
ε

K

[
eKt − 1

]
, ∀t ≥ t0.

For the convenience of the reader we state here the Weyl Perturbation Theorem (see Corollary
III.2.6 of Bhatia [3].)

Weyl Perturbation Theorem Let M and H be n by n Hermitian matrices, where M has
eigenvalues µ1 ≥ · · · ≥ µn and H has eigenvalues ν1 ≥ · · · ≥ νn. If ‖M −H‖ ≤ ε, then
|µi − νi| ≤ ε for i = 1, . . . , n.

Next is a result on the stability of local maxima points.
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Lemma 6 Suppose f and g are of class C3, and have local maxima points at x and y,
respectively, with Hf (x) having all eigenvalues in (−∞,−ν] for some ν > 0. Then for any
0 < b ≤ 1 and κ ≥ max

(
κ3(f,B (x, b)), κ3(g,B (x, b))

)
,

‖x− y‖ ≤ min

{
3ν

4κ
, b

}
⇒ ‖x− y‖ ≤ 2√

ν

(
|f(x)− g(x)|+ |f(y)− g(y)|

)1/2
. (27)

Proof Let Hf and Hg be short for the Hessian matrices Hf (x) and Hg(y), respectively. We
develop f and g around x and y, respectively. Assuming ‖x − y‖ ≤ min

{
3ν
4κ
, b
}

, which

implies that y ∈ B (x, b), we have

f(y) = f(x) +
1

2
Hf [x− y, x− y] +Rf (x, y), with |Rf (x, y)| ≤ κ

6
‖x− y‖3;

g(x) = g(y) +
1

2
Hg[x− y, x− y] +Rg(x, y), with |Rg(x, y)| ≤ κ

6
‖x− y‖3.

Summing these two equalities, we obtain

1

2
(Hf + Hg)[x− y, x− y] = f(y)− g(y) + g(x)− f(x)−Rf (x, y)−Rg(x, y).

Let ν > 0 be such that the largest eigenvalue of Hf is bounded by −ν. By the triangle
inequality and the fact that Hg is negative semidefinite,

ν‖x− y‖2 ≤ ‖(Hf + Hg)[x− y, x− y]‖ ≤ 2 |f(x)− g(x)|+ 2 |f(y)− g(y)|+ 2κ

3
‖x− y‖3.

Thus, when ‖x− y‖ ≤ min
{

3ν
4κ
, b
}

, we have ν‖x− y‖2 − 2κ
3
‖x− y‖3 ≥ ν

2
‖x− y‖2, so that

‖x− y‖2 ≤ 4

ν
(|f(x)− g(x)|+ |f(y)− g(y)|) ,

and from this we conclude (27). �

It would help the reader to make his or her way through the intricate arguments that follow
to always keep in mind that η0, η1, η2 and ε > 0 are assumed to be sufficiently small and
tε > 0 sufficiently large as needed, and η3 ≤ D, where D > 0 is a pre-chosen constant.

Bound on ‖x̂? − x?‖.
Our first goal is to derive a bound on ‖x̂?−x?‖. Arguing as in the proof of Theorem 1 of [1],
we may assume, without loss of generality [WLOG], that Lg(g(x0)/2) ⊂ B(x0, 3r0), where
r0 is as in (13). So from now on, we assume that Lg(g(x0)/2) is compact and we set

S = Lg(g(x0)/2). (28)

Note that since g (x (t)) increases along t ≥ 0, x (t) ∈ S for all t ≥ 0.

We also let κ` be short for κ`(g, S), as defined in (11).
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Claim 1. For η0 sufficiently small, x̂(t) ∈ S, for all t ≥ 0, with S as in (28). Indeed,
suppose there is t > 0 such that x̂(t) /∈ S. Fix % = g(x0)/2. Then, by continuity, there is
0 ≤ t′ < t such that g(x̂(t′)) = g(x0)− %. Since both x̂(t′) and x0 ∈ S, we have

ĝ(x̂(t′)) = ĝ(x̂(t′))− g(x̂(t′)) + g(x̂(t′))

≤ η0 + g(x0)− %
= η0 + ĝ(x0) + g(x0)− ĝ(x0)− %
≤ ĝ(x0) + 2η0 − %,

by the triangle inequality, applied twice. Since ĝ(x̂(t′)) ≥ ĝ(x0), we see that this situation
does not arise when η0 < %/2. This establishes Claim 1.

From now on we shall assume that η0 is sufficiently small, so that

x̂(t) ∈ S, for all t ≥ 0. (29)

Claim 2. For all η0, η1 and η2 sufficiently small, x̂? = limt→∞ x̂(t) is well defined and is
close to x?. Since ĝ is of class C3 by assumption, the map x 7→ ∇ĝ(x) is C1, and since by
Claim 1 for all η0 sufficiently small x̂(t) stays in S and S is compact, x̂(t) is defined for all
t ≥ 0 by the first corollary to the first theorem in [10, Section 17.5].

Applying Lemma 5 with t0 = 0 and x1 = y1 = x0 we get

‖x̂(t)− x(t)‖ ≤ η1√
dκ2

e
√
dκ2t, ∀t ≥ 0, (30)

For ε ∈ (0, C3), where C3 is as in Lemma 3, let tε be such that x(t) ∈ B(x?,
√

(2ε/ν)) for all
t ≥ tε, which is well-defined since x(t)→ x? as t→∞. Hence

‖x̂(tε)− x?‖ ≤ ‖x̂(tε)− x(tε)‖+ ‖x(tε)− x?‖

≤ η1√
dκ2

e
√
dκ2tε +

√
2ε

ν
=: δ1. (31)

Assume that η1 and ε are small enough so that δ1 <
√
C3/ν. Letting C (ε) be as in Lemma

3, by (23) we have

B (x?, δ1) ⊂ C (ε1) , with ε1 =
ν

2
δ21,

noting that
√
ε12/ν = δ1 and ε1 < C3/2. Thus x̂(tε) belongs to C (ε1) and in particular

g(x̂(tε)) ≥ g(x?)− ε1. Using this last inequality, we deduce from the triangle inequality and
the fact that t 7→ ĝ (x̂(t)) is increasing that for t ≥ tε,

g(x̂(t)) ≥ ĝ(x̂(t))− η0 ≥ ĝ(x̂(tε))− η0
≥ g(x̂(tε))− 2η0 ≥ g(x?)− ε2,

where
ε2 := ε1 + 2η0. (32)
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Since x̂(tε) ∈ C (ε1) ⊂ C (ε2) and (x̂(t) : t ≥ tε) is connected and in Lg(g(x?) − ε2), we nec-
essarily have (x̂(t) : t ≥ tε) ⊂ C (ε2). Assume that ε, η0 and η1 are small enough so that

ε2 ≤ C3. Then, by Lemma 3, C (ε2) ⊂ B
(
x?,
√

2ε2/ν
)

, and so

‖x̂(t)− x?‖ ≤ ε3 :=
√

2ε2/ν, for all t ≥ tε. (33)

Assume ε, η0, η1 are small enough so that B (x?, ε3) ⊂ S. For any x and y in B (x?, ε3) we
get by (10) that

‖Hg(x)−Hg(y)‖ ≤ d‖Hg(x)−Hg(y)‖max ≤ d3/2κ3‖x− y‖. (34)

Using (34) and (33), for any x ∈ B (x?, ε3)

‖Hĝ(x)−Hg(x
?)‖ ≤ ‖Hĝ(x)−Hg(x)‖+ ‖Hg(x)−Hg(x

?)‖ (35)

≤ η2 + d3/2κ3‖x− x?‖ ≤ η2 + d3/2κ3ε3. (36)

Let ν > ν, but close enough such that all the eigenvalues of H are still in (−∞,−ν). We
then apply the Weyl Perturbation Theorem, cited above, to conclude that for all η2 and ε3
small enough and x ∈ B (x?, ε3) so that

η2 + d3/2κ3ε3 ≤ ν − ν (37)

the eigenvalues of Hĝ(x) are all in (−∞,−ν). We shall assume that ε, η0, η1, η2 are small
enough so that this is the case. Using (33) and compactness of B (x?, ε3) , we get by Cantor’s
intersection theorem that

K := ∩t≥tε{x̂ (u) : u ≥ t}

is nonempty. In addition K is composed of critical points of ĝ. (See [10], Section 9.3,
Proposition, p. 206 and Theorem p. 205). Therefore we conclude that K is a singleton,
which we denote x̂?. This is a critical point of ĝ in B (x?, ε3) and is the limit of x̂ (t) as
t→∞. Moreover, x̂? is a local maxima point of ĝ. This proves Claim 2.

We have just shown that for ε > 0, η0, η1and η2 sufficiently small

‖x̂? − x?‖ ≤ ε3.

To summarize, the analysis from equations (30) through (37) shows that for all ε > 0, η0, η1
and η2 small enough, B (x∗, ε3) ⊂ S, x̂∗ ∈ B (x∗, ε3) , η2 + d3/2κ3ε3 ≤ ν − ν and (33) holds,
where

δ1 =
η1√
dκ2

e
√
dκ2tε +

√
2ε

ν
, ε1 =

ν

2
δ21, ε2 = ε1 + 2η0, (38)

and
ε3 =

√
2ε2/ν. (39)

Notice that ε3 is a function of (ε, η0, η1, η2) and

ν − ν − η2
d3/2κ3

≥ ε3 =

√
2 (ε1 + 2η0)

ν
=

√
2
(
ν
2
δ21 + 2η0

)
ν

.
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Letting κ = κ3 + η3 and b = ε3 in Lemma 6 we see by (27) that whenever

‖x̂? − x?‖ ≤ min

{
ε3,

3ν

4 (κ3 + η3)

}
,

then

‖x̂? − x?‖ ≤ 2
√

2η0√
ν

. (40)

Clearly when η3 ≤ D for some D > 0 and ε3 ≤ 3
4
ν/ (κ3 +D) then

min

{
ε3,

3ν

4 (κ3 + η3)

}
≥ min

{
ε3,

3ν

4 (κ3 +D)

}
= ε3.

Putting everything together, we can conclude for every D > 0 there exists a constant

q0 := q0(g, x0, ν, ν̄, D) ≥ 1

such that whenever max{ε, η0, η1, η2} ≤ 1/q0 and η3 ≤ D

‖x̂? − x?‖ ≤ 2
√

2η0√
ν

=: Q0
√
η0. (41)

∗Throughout the remainder of the proof, we shall assume max{ε, η0, η1, η2} ≤ 1/q0 and
η3 ≤ D so that (41) holds.

Bound on ‖x(t)− x̂(t)‖ for large t.

Next we obtain a bound on ‖x(t)− x̂(t)‖ for large t > 0. Let H and Ĥ be short for Hg(x
?)

and Hĝ(x̂
?), respectively. We proceed with a linearization of the flows near the critical points.

Let ν > ν, but close enough such that all the eigenvalues of H are still in (−∞,−ν). By
combining (36) and (41)

‖Ĥ−H‖ ≤ η2 + d
3
2κ3Q0

√
η0. (42)

Choose ν > ν2 > ν1 > ν. Clearly the eigenvalues of H are also in (−∞,−ν2). Suppose that
η0 and η2 are small enough that

η2 + d
3
2κ3Q0

√
η0 < ν − ν2.

Thus ‖Ĥ−H‖ ≤ ν − ν2 and by Weyl’s inequality the eigenvalues of Ĥ are in

(−∞,−ν + (ν − ν2)) = (−∞,−ν2). (43)

Recall that WLOG we assume that S = Lg(g(x0)/2). By the definition of S, clearly there is
an r+ > 0 such that B̄(x?, r+) ⊂ S. Note that for any D > 0 fixed the constant q0 ≥ 1 can
be taken large enough so that (29), (31), (33), (34), (36) and (41) hold simultaneously. Fix
an ε > 0 small enough so that this is the case, and also such that

√
ε < (

√
ν/2)r+/2. Recall

the constants (38) and note that ε2 ≥ ε. Then recall by (33) there is a tε (depending on ε
and the trajectory x(t)) such that

‖x̂(t)− x?‖ ≤
√

2ε2/ν, for all t ≥ tε,
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which in combination with (41) gives

‖x̂(t)− x̂?‖ ≤
√

2ε2/ν +Q0
√
η0, for all t ≥ tε. (44)

Also by (25) for all t ≥ tε, where tε > 0 is large enough,

‖x(t)− x?‖ ≤ r+/2. (45)

We see by (41) that when η0 and η1 are small enough we get B̄(x̂?, r+/2) ⊂ B̄(x?, r+) and
we see by (44) that when η0 and η1 are small enough, ‖x̂(t)− x̂?‖ ≤ r+/2 (note that this is
possible since we have fixed

√
ε < (

√
ν/2)r+/2). Setting r‡ = r+/2 and

t‡ = tε, (46)

we get that
B̄(x?, r‡) ⊂ S and B̄(x̂?, r‡) ⊂ S,

and
x(t) ∈ B̄(x?, r‡) and x̂(t) ∈ B̄(x̂?, r‡), for any t ≥ t‡, (47)

when η0, η1, and η2 are small enough and η3 ≤ D, and also keeping (45) in mind. (Note that
t‡ depends only on g and the trajectory x(t)).

Letting
x‡(t) = x(t)− x? and x̂‡(t) = x̂(t)− x̂?,

by a Taylor expansion, for all t ≥ t‡ we have

x′‡(t) = ∇f(x(t)) = Hx‡(t) +R(t), with ‖R(t)‖ ≤
√
dκ3
2
‖x‡(t)‖2 ; (48)

x̂′‡(t) = ∇f̂(x̂(t)) = Ĥ x̂‡(t) + R̂(t), with ‖R̂(t)‖ ≤
√
d(κ3 + η3)

2
‖x̂‡(t)‖2 . (49)

The difference gives

x′‡(t)− x̂′‡(t) = Hx‡(t)− Ĥx̂‡(t)) +R(t)− R̂(t)

= H(x‡(t)− x̂‡(t)) + (H− Ĥ)x̂‡(t) +R(t)− R̂(t). (50)

Claim 3 We get after integrating (50),

x‡(t)− x̂‡(t) = −etH(x? − x̂?) +

∫ t

0

e(t−s)H
[
(H− Ĥ)x̂‡(s) +R(s)− R̂(s)

]
ds. (51)

To check this note that x‡(0)− x̂‡(0) = x? − x̂?, and differentiating (51), we get

x′‡(t)− x̂′‡(t) = −HetH(x? − x̂?) + HetH
∫ t

0

e−sH
[
(H− Ĥ)x̂‡(s) +R(s)− R̂(s)

]
ds

+(H− Ĥ)x̂‡(t) +R(t)− R̂(t). (52)
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From (51), etH(x? − x̂?) may be expressed as

etH(x? − x̂?) = −
(
x′‡(t)− x̂′‡(t)

)
+

∫ t

0

e(t−s)H
[
(H− Ĥ)x̂‡(s) +R(s)− R̂(s)

]
ds. (53)

Putting (53) in (52) we get (50). This verifies Claim 3.

Now since all of the eigenvalues of H are in (−∞,−ν) we have∥∥eαH∥∥ ≤ e−να, for all α > 0.

Using this fact with the triangle inequality along with (8), (42) and the inequalities in (48)
and (49) we get

‖x‡(t)− x̂‡(t)‖

≤ e−νt‖x? − x̂?‖+

∫ t

0

e−ν(t−s)
[
∆‖x̂‡(s)‖+

√
d

(
κ3
2
‖x‡(s)‖2 +

κ3 + η3
2
‖x̂‡(s)‖2

)]
ds, (54)

where
∆ = η2 + d

3
2κ3Q0

√
η0.

Recall that by Lemma 4, for some C4 = C4(g, x0),

‖x‡(t)‖ ≤ C4e
−ν1t for all t ≥ 0. (55)

Claim 4. For ε > 0, η0, η1, and η2 small enough and that η3 ≤ D so that (41), (43) and
(47) hold, there is a constant C ′4 := C ′4(g, x0, ν, ν̄, ε,D) such that

‖x̂‡(t)‖ ≤ maxC ′4e
−ν1t, for all t ≥ 0. (56)

Proof. We assume WLOG that S = Lg (g (x0) /2) and is compact. Thus

sup
x,y∈S

‖x− y‖ = L <∞. (57)

Let κ̂3 be short for κ3(ĝ, S). We have that,

κ̂3 ≤ κ3 + η3 ≤ κ3 +D.

We assume that ε > 0, η0, η1, and η2 are small enough and that η3 ≤ D so that (41) and
(47) hold.

A Taylor expansion of ∇ĝ at x ∈ B̄(x̂?, r0) gives

∇ĝ(x) = Ĥ(x− x̂?) + R̂(x, x̂?), (58)

with
‖R̂(x, x̂?)‖ ≤ κ̂3

√
d
2
‖x− x̂?‖2.

Therefore by (58) and x̂′ (t) = ∇ĝ(x̂ (t)), we have,

d

dt
(x̂(t)− x̂?)− Ĥ (x̂(t)− x̂?) = R̂ (x̂(t), x̂?) , (59)
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and since x̂(0) = x0 and x̂ (t) satisfies the differential equation (59) it is readily checked that

x̂(t)− x̂? = etĤ(x0 − x̂?) +

∫ t

0

e(t−s)ĤR̂ (x̂(s), x̂?) ds.

Since all the eigenvalues of Ĥ are in (−∞,−ν2) we have∥∥∥eαĤ∥∥∥ ≤ e−ν2α, for all α > 0.

Then,

‖x̂(t)− x̂?‖ ≤ e−ν2t‖x̂0 − x̂?‖+ κ̂3
√
d
2

∫ t

0

e−ν2(t−s)‖x̂(s)− x̂?‖2ds. (60)

Set
û(t) = eν2t‖x̂(t)− x̂?‖

and

Û(t) = ‖x0 − x̂?‖+ κ̂3
√
d
2

∫ t

0

eν2s‖x̂(s)− x̂?‖2ds. (61)

Thus by (60), û(t) ≤ Û(t) and Û ′(t) = κ̂3
√
d
2
e−ν2tû2(t), so

Û ′(t)

Û(t)
= κ̂3

√
d
2
e−ν2tû(t)

û(t)

Û(t)

≤ κ̂3
√
d
2
e−ν2tû(t) = κ̂3

√
d
2
‖x̂(t)− x̂?‖

≤
√
d

2
(κ3 +D)‖x̂(t)− x̂?‖. (62)

Recall that ν2 > ν1 > ν. We can choose WLOG r‡ in (47) small enough so that

r‡ ≤

[√
d

2
(κ3 +D)

]−1
(ν2 − ν1).

Assuming that this is the case, we get from (62)

Û ′(t)

Û(t)
≤ ν2 − ν1, for all t ≥ t‡.

By integrating between t‡ and t, we deduce that

log Û(t) ≤ log Û(t‡) + (ν2 − ν1)(t− t‡),

and so
‖x̂(t)− x̂?‖ = e−ν2tû(t) ≤ e−ν2tÛ(t) ≤ c1e

−ν1t, for all t ≥ t‡,

with
c1 := Û(t‡)e

−(ν2−ν1)t‡ .
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For t < t‡, we simply have
‖x̂(t)− x̂?‖ ≤ c2e

−ν1t,

where
c2 = max

0≤t≤t‡
‖x̂(t)− x̂?‖eν1t.

Notice that by (57) and (61), keeping in mind that we always assume by Claim 1 that η0 is
sufficiently small so that x̂(t) ∈ S, for all t ≥ 0,

Û(t‡) = ‖x0 − x̂?‖+ κ̂3
√
d
2

∫ t‡

0

eν2s‖x̂(s)− x̂?‖2ds

≤ L+ (κ3 +D)
√
dL2

2ν
eν2t‡

and thus
c1 ≤

(
L+ (κ3 +D)

√
dL2

2ν
eνt‡
)
e−(ν2−ν1)t‡ =: c1

and
c2 ≤ Leν1t‡ =: c2.

Hence (56) holds with the constant C ′4 = max(c1, c2), which proves Claim 4.

This, in combination with (55), shows that for all t ≥ 0

max(‖x‡(t)‖, ‖x̂‡(t)‖) ≤ CMe
−ν1t, (63)

where CM = max(C4, C
′
4).

We shall use (63) to bound the integral in (54). We have by (63) and ν > ν1 > ν∫ t

0

e−ν(t−s)
[
∆‖x̂‡(s)‖+

√
d

(
κ3
2
‖x‡(s)‖2 +

κ3 + η3
2
‖x̂‡(s)‖2

)]
ds,

≤
∫ t

0

e−ν(t−s)
[
∆CMe

−ν1s +
√
d

(
κ3
2
C2
Me
−2ν1s +

κ3 + η3
2

C2
Me
−2ν1s

)]
ds

≤
∫ t

0

e−ν(t−s)
[
∆CMe

−ν1s +
√
d (κ3 + η3)C

2
Me
−2νs

]
ds

≤ CMe
−νt
[
∆

1− e−(ν1−ν)t

ν1 − ν
+
√
d (κ3 + η3)CM

1− e−νt

ν

]
.

Applying this bound in (54) we get

‖x‡(t)− x̂‡(t)‖

≤ e−νt‖x∗ − x̂∗‖+ CMe
−νt
[
∆

1− e−(ν1−ν)t

ν1 − ν
+
√
d (κ3 + η3)CM

1− e−νt

ν

]
. (64)

By the triangle inequality

‖x(t)− x̂(t)‖ ≤ ‖x∗ − x̂∗‖+ ‖x‡(t)− x̂‡(t)‖
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and using (41) and (64) we deduce that for all t ≥ t‡,

‖x(t)− x̂(t)‖

≤ (1 + e−νt)Q0
√
η0 + CMe

−νt
[
∆

1− e−(ν1−ν)t

ν1 − ν
+
√
d(κ3 + η3)CM

1− e−νt

ν

]
.

Keeping in mind that we assume that η3 ≤ D, η0, η1 and η2 ≤ 1/q0 ≤ 1, which makes
∆ ≤ 1 + d3/2κ3Q0. Therefore for t‡ = tε > 0 suitably large we get that for some constant
Q1 = Q1(g, x0, ν, ν, ε,D) > 0,

‖x(t)− x̂(t)‖ ≤ Q1

(√
η0 + e−νt

)
, for all t ≥tε. (65)

(Recall that in (46) we defined t‡ := tε.)

Notice that since g is in C3, there is an ε > 0 such that all the eigenvalues of Hg(x) exceed
−ν when x ∈ B(x?, ε), ε > 0, being fixed. Note that this implies that ∇g is Lipschitz on
B(x?, ε) with constant ν. Let tε be large enough such that for all t ≥ tε, x(t) ∈ B(x?, ε/2).
Assume that η0 is small enough so that ‖x̂?−x?‖ ≤ ε/2, which is possible by (41). Moreover
by (65) for a suitably large tε > 0 and small η0 > 0 with η2 ≤ 1/q0 ≤ 1 and η3 ≤ D

‖x(t)− x̂(t)‖ ≤ Q1

(√
η0 + e−νtε

)
≤ ε/2, for all t ≥tε, (66)

Then we also have x̂ (t) ∈ B (x?, ε) for all t ≥ tε. We may now apply Lemma 5 with
S = B(x?, ε), t0 = tε, x1 = x(tε), y1 = x̂(tε), keeping in mind that ∇g is Lipschitz on
B(x?, ε) with constant ν, to get

‖x(t)− x̂(t)− (x(tε)− x̂(tε)) ‖ ≤
η1
ν
eνt, ∀t ≥ tε. (67)

Bound on ‖x(t)− x̂(t)‖ for small t.

Since ε is fixed, by (30) we also get by Lemma 5 the following bound on ‖x(t) − x̂(t)‖ for
small t ≥ 0

‖x(t)− x̂(t)‖ ≤ η1√
dκ2

e
√
dκ2t ≤ η1e

|√dκ2−ν|tε
√
dκ2

eνt, 0 ≤ t ≤ tε. (68)

Completion of the Proof of Theorem 2

Combining (67) and (68) we get

‖x(t)− x̂(t)‖ ≤ Q2η1e
νt, ∀t ≥ 0, (69)

for some constant Q2 = Q2(g, x0, ν, ν, ε,D). Then from (65) and (69) we arrive at

‖x(t)− x̂(t)‖ ≤ Q3 min
[√
η0 + e−νt, η1e

νt
]
, ∀t ≥ 0, (70)

for some constant Q3 = Q3(g, x0, ν, ν, ε,D). Indeed, the curves t 7→ Q1

(√
η0 + e−νt

)
and

t 7→ Q2η1e
νt intersect at some point t larger than tε if

Q1

(√
η0 + e−νtε

)
≥ Q2η1e

νtε ⇐⇒ Q1 ≥ Q2
η1e

νtε

√
η0 + e−νtε

,
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and this is guaranteed if we choose Q1 large enough that Q1 ≥ Q2
1
q0
e(ν+ν)tε . (Recall the

bounds in (41) and note that Q2 does not depend on Q1).

We are now ready to finish the proof of Theorem 2. We shall show that the bound (14)
follows from (70). To verify this, we start with

min
[√
η0 + e−νt, η1e

νt
]
≤ 2B(t), B(t) := min

[
max{√η0, e−νt}, η1eνt

]
.

Set t0 = 1
2ν

log(1/η0) and note that

max{√η0, e−νt} =

{
e−νt when t ≤ t0√
η0, when t > t0.

Suppose that η0 is small enough so that t0 ≥ t‡.

• When t ≥ t0, then we simply observe that B(t) ≤ η
1/2
0 .

• When t ≤ t0, we have B(t) = min
[
e−νt, η1e

νt
]
. Let t1 = 1

ν+ν
log(1/η1). Note that

the map defined on [0,∞) by t 7→ min
[
e−νt, η1e

νt
]

is increasing over [0, t1], decreasing
[t1,∞) , and that

min{√η0, e−νt} =

{
η1e

νt when t ≤ t1
e−νt, when t ≥ t1.

• When t1 ≥ t0 and t ≤ t0, we see that B(t) = η1e
νt0 ≤ η1η

− ν
2ν

0 .

• When t1 < t0 and t ≤ t0, then B(t) ≤ B(t1) = e−νt1 ≤ η
ν
ν+ν

1 .

Since t0 ≤ t1 if and only if η1η
− ν

2ν

0 ≤ η
ν
ν+ν

1 , we conclude that B(t) ≤ min
{
η

ν
ν+ν

1 , η1η
− ν

2ν

0

}
for all t ≤ t0.

Hence, we worked (70) into

sup
t≥0
‖x(t)− x̂(t)‖ = 2Q3 max

{√
η0,min

[
ηδ1, η

δ−1
2δ

0 η1
]}
,

where δ = ν
ν+ν

. We note that

√
η0 ≤ ηδ1 ⇐⇒ η

1
2δ
0 ≤ η1 ⇐⇒

√
η0 ≤ η1η

1
2
− 1

2δ
0 ⇐⇒ √η0 ≤ η

δ−1
2δ

0 η1

and

ηδ1 ≤ η
δ−1
2δ

0 η1 ⇐⇒ η
1−δ
2δ

0 ≤ η1−δ1 ⇐⇒ √η0 ≤ ηδ1.

Using these equivalences we deduce that

max
{√

η0,min
[
ηδ1, η

δ−1
2δ

0 η1
]}

= max
{√

η0, η
δ
1

}
.

Putting together our bounds on ‖x(t) − x̂(t)‖ for t > 0 large and t ≥ 0 small, we can now
conclude from (70) that for all ε > 0 small enough and all D > 0 there exists a constant
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C := C(g, x0, ν, ν̄, D) ≥ 1 and a function F (g, x0, ν, ν̄, ε,D) of ε and D such that, whenever
max{ε, η0, η1, η2} ≤ 1/C and η3 ≤ D, x̂(t) is defined for all t ≥ 0 and

sup
t≥0
‖x(t)− x̂(t)‖ ≤ F (g, x0, ν, ν̄, ε,D) max

{√
η0, η

δ
1

}
, (71)

holds, where δ := ν/ (ν + ν). We now take ε = 1/C in (71). This completes the proof of
Theorem 2. �
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