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Gérard BIAU∗, Benôıt CADRE and Bruno PELLETIER
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Abstract

Assessing the number of clusters of a statistical population is one of the
essential issues of unsupervised learning. Given n independent obser-
vations X1, . . . , Xn drawn from an unknown multivariate probability
density f , we propose a new approach to estimate the number of con-
nected components, or clusters, of the t-level set L(t) = {x : f(x) ≥ t}.
The basic idea is to form a rough skeleton of the set L(t) using any
preliminary estimator of f , and to count the number of connected
components of the resulting graph. Under mild analytic conditions on
f , and using tools from differential geometry, we establish the asymp-
totic consistency of our method.

Index Terms — Cluster analysis, Connected component, Level set,
Graph, Tubular neighborhood.

AMS 2000 Classification: 62G05, 62G20.

1 Introduction

Clustering is the problem of identifying groupings of similar points that are
relatively isolated from each other, or in other words to partition the data
into dissimilar groups of similar items. This unsupervised learning paradigm
is perhaps one of the most widely used statistical techniques for exploratory
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data analysis. Across all disciplines, from social sciences over biology to com-
puter science, practitioners try to get a first intuition about their data by
identifying meaningful groups of observations. We refer the reader to Duda,
Hart and Stork [9], Chapter 10, and Hastie, Tibshirani and Friedman [12],
Chapter 14, for a general background on the question.

A major challenge in cluster analysis is to assess the number of clusters, say
k. Practically speaking, the identification of k is essential for effective and
efficient data partitioning, and it should be seen as a step preliminary to
any clustering algorithm. For instance, popular clustering algorithms such
as k-means or Gaussian mixture modeling may generate bad results if initial
partitions are not properly chosen.

Contrary to data analysis methods such as regression or classification, there
are many ways to define clustering—even the question “What is clustering?”
is difficult to answer in all generality (von Luxburg and Ben-David [14]).
Thus, in order to make precise statements about k, a formal definition of
cluster is needed. In the present paper, we will use the definition proposed by
Hartigan [11]: Given a R

d-valued random variable X with probability density
f and a positive level t, a t-cluster is defined as a connected component (i.e.,
a maximal connected subset) of the t-level set

L(t) = {x ∈ R
d : f(x) ≥ t}.

The advantage of this definition is that it is geometrically easy to understand.
The level t should not be considered here as a smoothing parameter to be
assigned in an optimum way: it just indicates the resolution level chosen for
the practical clustering problem at hand. Thus, in this context, the number
of connected components of L(t), say k(t), is considered as the “true” num-
ber of clusters of the underlying distribution.

In the present paper, our purpose is to estimate the positive integer k(t),
given a random sample X1, . . . , Xn drawn from f . A rough analysis sug-
gests first to estimate the level sets of the probability density f (Polonik [16],
Tsybakov [18], Cadre [3]), and then to evaluate the number of connected
components of the resulting set estimate. However, this does not seem to be
a promising strategy, especially because it requires assessing the level sets,
which is, in the present context, a superfluous operation. (Note however
that estimating the clusters can provide valuable information to group the
data, see Cuevas, Febrero and Fraiman [7]). Therefore, we propose a dif-
ferent approach, which bypass the estimation of the level sets, and which is
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computationally simple. The basic idea is to form a rough skeleton of the
level set L(t) using any preliminary estimator of f , and to count the number
of connected components of the resulting graph. Practically speaking, the
latter operation can be performed efficiently using for example a tree search
algorithm such as Depth-First Search (Cormen, Leiserson and Rivest [5]).
Our approach is close in spirit to that of Cuevas, Febrero and Fraiman [6],
who analyse a simple algorithm to count the number of connected compo-
nents of the Devroye-Wise [8] estimate of L(t). We also refer the reader to
Duda, Hart and Stork [9], Section 10.12, for an account on related graph-
theoretic methods for clustering purposes.

The paper is organized as follows. In Section 2, we introduce notation and
define kn(t), our graph-based estimator of the number of clusters. The con-
vergence of kn(t) towards k(t) is studied in Section 3. Technical lemmas
necessary to the proof of the results are postponed to the Appendix A.

2 Notation and assumptions

Let f be a probability density function on R
d. As explained earlier, for any

t > 0 in the range of f , we let the t-level set be defined as L(t) = {x ∈
R

d : f(x) ≥ t}, and denote by k(t) the number of connected components
of L(t). Recall that, in our framework, the integer k(t) is considered as the
“true” number of clusters of the statistical population associated with f , in
the sense of Hartigan’s definition [11]. In all of the following, k(t) will be
assumed finite.

Let Dn = {X1, . . . , Xn} be an i.i.d. sample drawn from f . In addition to
the data set Dn, it will also be supposed that at our disposal is an estimator
fn of f , based on Dn, and obtained by an arbitrary method, e.g., a kernel
density estimator, but many other choices are possible.

We now proceed to define the estimator of k(t) by constructing a graph as
follows. First, set Jn(t) = {i = 1, . . . , n : fn(Xi) ≥ t}. Next, given a sequence
(rn) of (strictly) positive real numbers, consider the sample items falling in
Jn(t), and introduce the Card Jn(t)×Card Jn(t) matrix Sn = [sij] with binary
entries

sij =

{

1 if ‖Xi − Xj‖ ≤ rn

0 otherwise,

where ‖.‖ is the Euclidean norm on R
d. The matrix Sn induces a graph,

Gn(t), the nodes of which are the points in Jn(t), and where an edge joins
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node i and node j if and only if sij = 1, or, equivalently, ‖Xi − Xj‖ ≤ rn.
This algorithm produces a skeleton of the set Jn(t), where two elements x
and x′ of Jn(t) are in the same cluster if and only if there exists a chain x,
x1, . . . , xk, x′ in Jn(t) such that x is connected to x1, x1 to x2, and so on
for the whole chain. Our proposal is to estimate k(t) by kn(t), the num-
ber of connected components of the graph Gn(t), sometimes called ε-nearest
neighbor graph. As explained in the Introduction, the evaluation of kn(t)
does not require to estimate the whole set L(t). Moreover, its computation
can be performed efficiently in O(V Gn(t) + EGn(t)) operations (e.g., via the
Depth-First Search algorithm, see Cormen, Leiserson and Rivest [5]), where
V Gn(t) (resp. EGn(t)) denotes the number of vertices (resp. edges) of the
graph Gn(t).

Our main result states that kn(t) is a consistent estimator of k(t). To prove
this, and denoting by {f ∈ A} the set {x ∈ R

d : f(x) ∈ A} for any Borel set
A ⊂ R, we shall need the following assumptions.

Assumption 1

(a) The probability density f is of class C1 on a neighborhood of {f = t}.

(b) For each x ∈ {f = t}, the gradient of f at x is non-zero.

Assumption 2

With probability 1, the estimator fn is of class C1.

Note that Assumption 1 (b) is equivalent to the fact that the differential dfx

of f at x is surjective at every x ∈ {f = t}. Furthermore, Assumption 1 im-
plies that {f = t} has Lebesgue mass 0 and that each connected component
of L(t) has positive Lebesgue mass, i.e., we have (i) λ({f = t}) = 0, and
(ii) λ(Cl(t)) > 0, where λ is the Lebesgue measure on R

d, and where the Cl

are the connected components of L(t). At last, under Assumption 1, the set
{f = t} is a submanifold of R

d of codimension 1 by the Implicit Function
Theorem. Finally, observe that Assumption 2 is not restrictive, and holds
for example if fn is of kernel type with a continuously differentiable kernel.

In the following, ∇ stands for the gradient and ‖.‖∞ denotes the supremum
norm over R

d.
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3 Main result

Theorem 3.1 Suppose that Assumption 1 and Assumption 2 hold. Let (εn)
be a sequence of positive real numbers such that εn → 0 and εn = o(rn). Let

V be a neighborhood of {f = t} such that infV ‖∇f‖ > 0. Then there exist

two positive constants C1 and C2 such that:

P
(

kn(t) 6= k(t)
)

≤ C1r
−d
n exp(−C2nrd

n)

+ 2P
(

‖fn − f‖∞ > εn

)

+ P
(

inf
V

‖∇fn‖ <
1

2
inf
V

‖∇f‖
)

.

As an example, consider the case where fn is a kernel estimator of f , i.e., for
x ∈ R

d,

fn(x) =
1

nhd
n

n
∑

i=1

K
(x − Xi

hn

)

,

where the kernel K is a probability density on R
d, and the smoothing param-

eter hn vanishes as n → ∞. For simplicity, assume that K is the Gaussian
kernel and that f is a C1 probability density with bounded gradient. Let hn

be such that hn = o(εn) and nhd+1
n / logn → ∞. Using Bernstein inequality,

one easily derives exponential bounds for the two terms above involving fn

and ∇fn (see, e.g., Prakasa Rao [17]). Moreover, assuming that hn ≤ ε2
n,

together with the condition nrd
n/ log n → ∞, we obtain the result

P
(

kn(t) 6= k(t)
)

= O
( 1

n2

)

.

Since kn(t) and k(t) are integers, the Borel-Cantelli lemma shows that, with
probability 1, kn(t) = k(t) for all n large enough.

Remark According to a referee, a challenging question is whether one can
obtain similar results by using only the connected components of the standard
ε-nearest and k-nearest neighbor graphs, for example by adapting methods
of Brito, Chavez, Quiroz and Yukich [2] and Penrose [15].

Proof of Theorem 3.1 uses the following lemma.

Lemma 3.1 Suppose that Assumption 1 holds. Then, for ε > 0 small

enough, we have

k(t − ε) = k(t) = k(t + ε).

Proof We only prove the equality k(t) = k(t + ε), the other case being
similar. On the one hand, for ε > 0 small enough, k(t) ≤ k(t + ε) since
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λ({f = t}) = 0. On the other hand, the inequality k(t) ≥ k(t + ε) for ε > 0
small enough is clear, since the gradient of f does not vanish on a neighbor-
hood of {f = t}. �

From now on, we denote by k̂n(t) the number of connected components of
the set

Ln(t) = {x ∈ R
d : fn(x) ≥ t}.

Lemma 3.2 Suppose that Assumption 1 and Assumption 2 hold. Then, for

ε > 0 small enough, the following inclusion between probability events holds

for all n ≥ 1:

[

‖fn − f‖∞ ≤ ε
]

∩
[

inf
V

‖∇fn‖ ≥
1

2
inf
V

‖∇f‖
]

⊂
[

k̂n(t) = k(t)
]

,

where V is defined in Theorem 3.1.

Proof On the one hand, using Lemma 3.1, we know that, for ε > 0 small
enough and all n ≥ 1,

[

‖fn − f‖∞ ≤ ε
]

⊂
[

k(t − ‖fn − f‖∞) = k(t + ‖fn − f‖∞)
]

between probability events. On the other hand, using the triangle inequality,
we may write

L(t + ‖fn − f‖∞) ⊂ Ln(t) ⊂ L(t − ‖fn − f‖∞). (3.1)

For any u > 0, we denote by Cj(u), j = 1, . . . , k(u), the connected compo-
nents of the set L(u). Then, for ε small enough, and after a possible re-
arrangement of the indices, we have Cj(t + ‖fn − f‖∞) ⊂ Cj(t− ‖fn − f‖∞),
for all j = 1, . . . , k(t), on the event [‖fn − f‖∞ ≤ ε]. Consequently, on the
event [‖fn − f‖∞ ≤ ε], k̂n(t) ≥ k(t).

Under Assumption 1, there exists a neighborhood U of {f = t} on which df
is never zero. Without loss of generality, one can assume that V ⊂ U . Now
ε can be chosen small enough for we have

L(t − ‖fn − f‖∞) \ L(t + ‖fn − f‖∞) ⊂ V

on the event [‖fn − f‖∞ ≤ ε]. Also, from equation (3.1), it follows that
∂Ln(t) ⊂ L(t − ‖fn − f‖∞) \ L(t + ‖fn − f‖∞). Suppose that k̂n(t) > k(t)
on the event

[

‖fn − f‖∞ ≤ ε
]

∩
[

inf
V

‖∇fn‖ ≥
1

2
inf
V

‖∇f‖
]

.
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Then fn must assume a local minimum at some point, say x, in V with
fn(x) < t, which contradicts the fact that infV ‖∇fn‖ > 0. Hence, k̂n(t) =
k(t). �

Proof of Theorem 3.1 Consider a covering Pn of L(t) composed of closed
balls centered on points of L(t) and of radius rn/2. Recall that by recursing
to a metric entropy argument (see for example Györfi, Kohler, Krzyżak and
Walk [10]), it may easily be shown that the minimal number of balls necessary
to cover a given compact D of R

d by balls of radius r with centers in D is
of order O(r−d). Thus, from now on, the covering Pn will be assumed to be
constructed in such a way that

Card (Pn) ≤ C1r
−d
n (3.2)

for some positive constant C1. Let us introduce the event

Ωn(t) =
[

∀A ∈ Pn :
∑

i∈Jn(t)

1A(Xi) ≥ 1
]

.

Finally, we denote by δ the smallest distance between two connected compo-
nents of L(t) when k(t) ≥ 2, and let δ = +∞ otherwise. Note that δ > 0 by
assumption.

Observe that, on the event Ωn(t), each element of Pn, i.e., a ball of radius
rn/2, contains at least one data point Xi with i ∈ Jn(t). Thus, as long as
n is large enough such that (i) rn ≤ δ/2, and (ii) εn is small enough for
Lemma 3.1 to hold, we have

Ωn(t) ∩
[

‖fn − f‖∞ ≤ εn

]

⊂
[

kn(t) = k̂n(t)
]

.

Consequently, using Lemma 3.2, we deduce that

Ωn(t) ∩
[

‖fn − f‖∞ ≤ εn

]

∩
[

inf
V

‖∇fn‖ ≥
1

2
inf
V

‖∇f‖
]

⊂
[

kn(t) = k̂n(t)
]

∩
[

k̂n(t) = k(t)
]

⊂
[

kn(t) = k(t)
]

.
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Therefore,

P
(

kn(t) = k(t)
)

≥ P

(

Ωn(t) ∩
[

‖fn − f‖∞ ≤ εn

]

∩
[

inf
V

‖∇fn‖ ≥
1

2
inf
V

‖∇f‖
]

)

= P
(

Ωn(t)
)

− P

(

Ωn(t) ∩
(

[

‖fn − f‖∞ > εn

]

∪
[

inf
V

‖∇fn‖ <
1

2
inf
V

‖∇f‖
]

))

≥ P
(

Ωn(t)
)

− P
(

‖fn − f‖∞ > εn

)

− P
(

inf
V

‖∇fn‖ <
1

2
inf
V

‖∇f‖
)

. (3.3)

Now we proceed to bound from below the term P(Ωn(t)). We have:

P
(

Ωc
n(t)

)

≤ P(∃A ∈ Pn :
∑

i∈Jn(t)

1A(Xi) = 0 and ‖fn − f‖∞ ≤ εn)

+ P
(

‖fn − f‖∞ > εn

)

≤ Card (Pn) sup
A∈Pn

P(∀i ∈ Jn(t) : Xi ∈ Ac and ‖fn − f‖∞ ≤ εn)

+ P(‖fn − f‖∞ > εn). (3.4)

Set J̄n(t) = {i = 1, . . . , n : f(Xi) ≥ t + εn}. On the event [‖fn − f‖∞ ≤ εn],
we have J̄n(t) ⊂ Jn(t). Consequently, for all A ∈ Pn,

P(∀i ∈ Jn(t) : Xi ∈ Ac and ‖fn − f‖∞ ≤ εn) ≤ P(∀i ∈ J̄n(t) : Xi ∈ Ac).
(3.5)

But, by definition of J̄n(t),

P(∀i ∈ J̄n(t) : Xi ∈ Ac)

= P
(

∀i = 1, . . . , n : (f(Xi) ≥ t + εn and Xi ∈ Ac) or (f(Xi) < t + εn)
)

=
[

µ
(

{f ≥ t + εn} ∩ Ac
)

+ µ
(

{f < t + εn}
)

]n

=
[

1 − µ
(

A ∩ {f ≥ t + εn}
)

]n

, (3.6)

where µ denotes the probability distribution associated with f .

Since εn = o(rn), it follows from Proposition A.2 that there exists a positive
constant C2, independent of n and A, such that

µ
(

A ∩ {f ≥ t + εn}
)

≥ C2r
d
n. (3.7)

Thus, we deduce from (3.2) and (3.4)–(3.7) that

P
(

Ωc
n(t)

)

≤ C1r
−d
n (1 − C2r

d
n)n + P

(

‖fn − f‖∞ > εn

)

.
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Using the inequality 1 − u ≤ exp(−u) for u ∈ R, we can now conclude from
(3.3) that

P
(

kn(t) = k(t)
)

≥ 1 − C1r
−d
n exp(−C2nrd

n)

− 2P
(

‖fn − f‖∞ > εn

)

− P
(

inf
V

‖∇fn‖ <
1

2
inf
V

‖∇f‖
)

,

as desired. �

A Geometrical results

Let us start with some definitions. For general references, we refer the reader
to Bredon [1], Chavel [4], and Kobayashi and Nomizu [13]. Let (M, σ) be
a smooth and closed (i.e., compact and without boundary) submanifold of
R

d. Let TpM be the tangent space to M at p, and let TM be the tangent
bundle of M . For all p ∈ M , TpM may be considered as a subspace of R

d

via the canonical identification of TpR
d with R

d itself. Via this identification,
the normal space TpM

⊥ to M at p is the orthogonal complement of TpM
in R

d. The normal bundle of M in R
d is defined by TM⊥ = ∪p∈MTpM

⊥,
with bundle projection map π : TM⊥ → M defined by π〈p, v〉 = p, i.e., each
element < p, v > of TM⊥ is mapped on p by π.

Now let θ : TM⊥ → R
d be given by θ〈p, v〉 = p+v. Also let TM⊥

ε = {〈p, v〉 ∈
TM⊥ : ‖v‖ < ε}. Then the Tubular Neighborhood Theorem (see e.g., Bredon
[1], page 93) states that there exists an ε > 0 such that θ : TM⊥

ε → R
d is a

diffeomorphism onto the neighborhood V(M, ε) = {x ∈ R
d : dist(x, M) < ε}

of M in R
d, which is called a tubular neighborhood of radius ε of M in R

d.

Proposition A.1 Let D be a connected domain of R
d with smooth boundary

∂D. Then there exists ρ > 0 such that, for all r ≤ ρ and all x ∈ D, there

exists a point y ∈ D such that

B
(

y,
r

2

)

⊂ B(x, r) ∩ D.

Proof By the Tubular Neighborhood Theorem, there exists a r0 > 0 such
that the set

V(∂D, r0) = {x ∈ R
d : dist(x, ∂D) ≤ r0}

is diffeomorphic to the subset

T∂D⊥
ε = {< p, v >∈ T∂D⊥ : ‖v‖ ≤ ε}
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of the normal bundle T∂D⊥ of ∂D. Thus each x ∈ V(∂D, r0) projects
uniquely onto ∂D, and may be expressed as

x = px + vxepx
,

where ep denotes the unit-norm section of T∂D⊥ pointing inwards D, i.e., ep

is the unit normal vector field to ∂D directed towards the interior of D.

Set r ≤ r0/2. Clearly, for all x ∈ D such that B(x, r) ⊂ D, we have

B
(

x,
r

2

)

⊂ B(x, r).

Now we examine those cases for which B(x, r)∩Dc 6= ∅. In this configuration,
we have

B(x, r) ⊂ V(∂D, r0),

since, for all y ∈ B(x, r),

dist(y, ∂D) ≤ dist(y, x) + dist(x, ∂D) ≤ r0.

Set x = px + vxepx
, and consider the ball B(y, r/2) centered at y = px +

(vx + r/2)epx
and of radius r/2. This ball is clearly contained in B(x, r).

Now, suppose that B(y, r/2) is not included in D. Then, there exists a point
q ∈ ∂D such that

dist(q, y) <
r

2
.

But

dist(q, y) ≥ dist(y, ∂D)

=
r

2
+ vx

≥
r

2
,

hence a contradiction. �

Proposition A.2 Suppose that the probability density f satisfies Assump-

tion 1. Let rn → 0 and let εn = o(rn). Then there exists a constant C > 0
such that, for all n large enough, and for all x ∈ {f ≥ t},

µ
(

B(x, rn) ∩ {f ≥ t + εn}
)

≥ Crd
n,

where µ denotes the probability distribution associated with f .
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Proof Observe first that, since f satisfies Assumption 1, there exists an
open neighborhood of {f = t} on which df is surjective. Consequently, from
the Implicit Function Theorem, there exists ε0 > 0 such that, for all ε ≤ ε0,
{f = t + ε} is a submanifold of R

d of codimension 1.

Consequently, for all n large enough such that εn ≤ ε0, and for all x ∈ {f ≥
t + εn}, the result follows from Proposition A.1. Thus there remains to ex-
amine those cases for which x ∈ {t ≤ f < t + εn}. For this purpose, we
first prove that, for all n large enough, B(x, rn) has a non-empty intersection
with {f ≥ t + εn} for all x ∈ {t ≤ f < t + εn}.

For all ε ≤ ε0, denote by r(ε) > 0 the maximal radius of a tubular neigh-
borhood of {f = t + ε}, the existence of which follows from the Tubular
Neighborhood Theorem, i.e., r(ε) is the largest number such that {x ∈
R

d : dist(x, {f = t + ε})} is a tubular neighborhood of {f = t + ε}. Set
ρ = inf0≤ε≤ε0

r(ε). Note that ρ > 0. Since εn → 0, for all n large enough, we
have

{f = t} ⊂ V
(

{f = t + εn}, ρ
)

.

Also, observe that in this case, {f = t + εn} ⊂ V({f = t}, ρ). Thus, each
x ∈ {f = t + εn} may be expressed as x = px + vxepx

, where px ∈ {f = t}
and where vx = dist(x, {f = t}). Expanding f at px yields

f(px + vxepx
) = f(px) + Depx

f(px + ξepx
)vx

i.e.,
t + εn = t + Depx

f(px + ξepx
)vx

for some ξ > 0, and where Duf(y) denotes the directional derivative of f at
y in the direction u. Since df is surjective for all x in {t ≤ f < ε0}, it follows
that there exists a constant C > 0 such that

sup
q∈{f=t+εn}

dist
(

q, {f = t}
)

≤ Cεn. (A.1)

Consequently, since εn = o(rn), for all n large enough, the ball B(x, rn) has
a non-empty intersection with {f ≥ t + εn} for all x ∈ {t ≤ f < t + εn}.

Now, for all n large enough, each x ∈ {t ≤ f < t + εn} may be expressed as
x = px − vxepx

, where px ∈ {f = t + εn}, and where vx > 0. Also, for all n
large enough, the two following assertions hold:

(i) B(x, rn) ⊂ V
(

{f = t + εn}, ρ
)

.
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(ii) B(x, rn) ∩ {f ≥ t + εn} 6= ∅.

Let y = px +[(rn−vx)/2]epx
, and consider the ball B(y, (rn−vx)/2). Clearly,

B
(

y,
rn − vx

2

)

⊂ B(x, rn).

Suppose that B(y, (rn − vx)/2) is not included in {f ≥ t + εn}. Then, there
exists some point q ∈ {f = t + εn} such that

dist(q, y) <
rn − vx

2
.

But

dist(q, y) ≥ dist
(

y, {f = t + εn}
)

=
rn − vx

2
,

hence a contradiction. Consequently,

B
(

y,
rn − vx

2

)

⊂ B(x, rn) ∩ {f ≥ t + εn}. (A.2)

From (A.2) and (A.1), it follows that

µ
(

B(x, rn) ∩ {f ≥ t + εn}
)

≥ ωd (rn − Cεn)
d ,

where ωd = λ(B(0, 1)). Finally, the result follows from the fact that εn =
o(rn). �
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