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Abstract
Let f be an unknown multivariate probability density with compact
support Sf . Given n independent observations X1, . . . , Xn drawn from
f , this paper is devoted to the study of the estimator Ŝn of Sf defined
as unions of balls centered at the Xi and of common radius rn. To
measure the proximity between Ŝn and Sf , we employ a general crite-
rion dg, based on some function g, which encompasses many statistical
situations of interest. Under mild assumptions on the sequence (rn)
and some analytic conditions on f and g, the exact rates of conver-
gence of dg(Ŝn, Sf ) are obtained using tools from Riemannian geome-
try. The conditions on the radius sequence are found to be sharp and
consequences of the results are discussed from a statistical perspective.
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1 Introduction

Let f be an unknown probability density function defined with respect to
the Lebesgue measure on Rd. This paper is concerned with the problem of
estimating the support of f , i.e., the closed set

Sf = {x ∈ Rd : f(x) > 0},

given a random sample X1, . . . , Xn drawn from f . Here and later, A means
the closure of the set A. Since the earlier works of Rényi and Sulanke (1963,
1964) and Geffroy (1964), the problem of support estimation has been con-
sidered by several authors [see, e.g., Chevalier (1976), Devroye and Wise
(1980), Grenander (1981), Cuevas (1990), Korostelev and Tsybakov (1993a,
1993b), Härdle, Park and Tsybakov (1995), Korostelev, Simar and Tsy-
bakov (1995), Mammen and Tsybakov (1995), Cuevas and Fraiman (1997),
Gayraud (1997), Báıllo, Cuevas and Justel (2000), and Klemelä (2004)]. The
application scope is vast, as support estimation is routinely employed across
the entire and diverse range of applied statistics, including problems in med-
ical diagnosises, machine condition monitoring, marketing or econometrics
[see the discussion in Báıllo, Cuevas and Justel (2000) and the references
therein]. In closed connection with the related topic of estimating a density
level set [Polonik (1995), Tsybakov (1997), Walther (1997), Cadre (2006)],
the problem of support estimation has been also addressed via unsupervised
learning methods, such as the one-class kernel Support Vector Machines al-
gorithm presented in Schölkopf, Platt, Shawe-Taylor, Smola and Williamson
(2001).

Among the various approaches that have been proposed to date to estimate
Sf , the probably most simple and intuitive one has been considered in De-
vroye and Wise (1980). The estimator is defined as

Ŝn =
n⋃
i=1

B(Xi, rn), (1.1)

where B(x, r) denotes the closed Euclidean ball centered at x and of radius
r, and where (rn) is an appropriately chosen sequence of positive smoothing
parameters. Note that this approach amounts to estimate the support of
the density by the support of a kernel estimate, the kernel of which has a
ball-shaped support. The sequence (rn) then plays a role analogous to that
of the kernel bandwidth. The practical properties of the support estimator
(1.1) are explored in Báıllo, Cuevas and Justel (2000), who argue that this
estimator is a good generalist when no a priori information is available on
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Sf . Moreover, from a practical perspective, the relative simplicity of the
naive strategy (1.1) arises as a major advantage in comparison with compet-
ing multidimensional set estimation techniques, that are faced with severe
difficulties owing to a heavy computational burden.

To measure the performance of the support estimator, i.e., the closeness of
Ŝn to Sf , a standard choice is to use the distance d1(Ŝn, Sf ) defined by

d1(Ŝn, Sf ) = λ(Ŝn4Sf ),
where 4 denotes the symmetric difference and λ is the Lebesgue measure on
Rd. This criterion of proximity between sets, which is geometric by essence,
has been successfully employed for example by Korostelev and Tsybakov
(1993b), Härdle, Park and Tsybakov (1995), and Mammen and Tsybakov
(1995) who have considered maximum-likelihood-type estimators and have
derived minimax rates of convergence under various assumptions on the
boundary sharpness of f , that is, the behavior of f near the boundary of
the support Sf .

The distance d1 may be easily extended to the much more general measure-
based distance dµ defined by

dµ(Ŝn, Sf ) = µ(Ŝn4Sf ),
where µ is any measure on the Borel sets of Rd. In this context, Cuevas and
Fraiman (1997) discuss the dµ-asymptotic properties of a plug-in estimator
of Sf of the form {fn > αn}, where fn is a nonparametric density estima-
tor of f , and where αn is a tuning parameter converging to zero. These
authors establish also asymptotic results in terms of the Hausdorff metric,
which is another natural criterion of proximity between sets [Cuevas (1990),
Korostelev and Tsybakov (1993b), Korostelev, Simar and Tsybakov (1995),
Cuevas and Rodŕıguez-Casal (2004)].

Assuming for convenience that µ is absolutely continuous with respect to the
Lebesgue measure on Rd, with a density g, the criterion dµ may be written
as

dg(Ŝn, Sf ) =

∫
Rd

1Ŝn4Sf (x)g(x)dx. (1.2)

The proximity measure (1.2) is fairly general and encompasses several inter-
esting cases of choices of g, depending on the problem at hand. For instance,
set first g ≡ f , and denote by X a random variable with density f indepen-
dent of the sample. This yields the criterion

df (Ŝn, Sf ) = P(X /∈ Ŝn|X1, . . . , Xn),
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which is a natural statistical measure of the accuracy of Ŝn with respect to
Sf . More generally, for a random variable X with density g independent of
the sample, we may write

dg(Ŝn, Sf ) = P(X ∈ Ŝn4Sf |X1, . . . , Xn). (1.3)

This loss has been considered in Devroye and Wise (1980) in a concrete test-
ing problem regarding the detection of the abnormal behavior of a system.
Roughly, a machine is observed in normal operation through the sequence
of independent observations X1, . . . , Xn drawn from the density f , and the
complement Scf of Sf is considered as a danger area. Given a new and unique
observation Xn+1 with density g (possibly different from f), one has to de-
cide whether or not the system behaves abnormally, in the sense that the
distribution of Xn+1 is different from f . A natural testing strategy then con-
sists in rejecting the null hypothesis if Xn+1 does not belong to Ŝn. In this
context, the distances df and dg have clear interpretations in terms of error
of the first kind (or false alarm probability) and of the second kind, respec-
tively. Devroye and Wise (1980) have proved consistency of the estimator
(1.1) with respect to the symmetric difference (1.3) under some conditions on
the sequence (rn) which are analogous to those imposed on the bandwidth
parameter in kernel estimation. The results of Devroye and Wise (1980)
have been further explored by Báıllo, Cuevas and Justel (2000), who focused
more particularly on the false alarm probability and suggested data-driven
strategies to select the smoothing parameter rn.

To the best of our knowledge, no exact rates of convergence of the density
support estimator (1.1) are available in the literature. In the present paper,
we propose to fill this gap, using the general distance dg defined in (1.2) as
a criterion of accuracy. Our main result (Theorem 3.1) states, under some
mild analytic conditions on f and g, that there exists an explicit non-negative
constant c such that√

nrdn Edg(Ŝn, Sf )→ c as n→∞,

provided nrdn → ∞ and nrd+2
n → 0. As a matter of fact, we will prove that

much faster rates are achievable–including exponential ones–, depending on
the relative positions and geometric characteristics of the respective supports
of f and g. Moreover, we will show that the requirement nrd+2

n → 0 is sharp,
in the sense that the condition nrd+2

n → ∞ implies
√
nrdn Ed1(Ŝn, Sf ) → ∞

(Theorem 3.2). We insist on the fact that, throughout the paper, the density
f is supposed to be continuous on Rd. Thus, we are in the case of a non-
sharp boundary, i.e., f decreases continuously to zero at the boundary of its
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support.

The paper is organized as follows. Section 2 introduces notation that is
used throughout. The main convergence results are exposed in Section 3
in the general setting, and next are specialized to two important sub-cases
developed in Section 4. Technical lemmas necessary to the proofs of the
theorems in Section 3 and Section 4 are postponed to the Appendix A. At
last, the proofs of our results require integrating over a tubular neighborhood
of the boundary of the support, and so a brief account to the main useful facts
from differential geometry is provided by Appendix B [for further material,
we refer to Gray (1990), Bredon (1993), Chavel (1993), and Kobayashi and
Nomizu (1996)].

2 Notation

Let us start by introducing some general notation concerning an arbitrary
smooth Riemannian submanifold (M,σ) of Rd. The Riemannian metric σ
on M is induced by the canonical embedding of M in Rd. The Riemannian
volume measure on (M,σ) will be denoted by vσ. We shall denote by TM⊥

the normal bundle of M , and the tubular neighborhood of M of radius ε will
be denoted by V(M, ε).

Given a function h on Rd taking values in R+ and any subset A of R+, we
use the notation

[h ∈ A] = {x ∈ Rd : h(x) ∈ A},

and we let the support Sh of h be defined as

Sh = [h > 0].

The interior and boundary of Sh will be denoted by
◦
Sh and ∂Sh = Sh−

◦
Sh,

respectively.

Wherever appropriate, we shall be led to consider the unit-norm section
{ehp , p ∈ ∂Sh} of T∂S⊥h that is pointing inwards, i.e., for all p ∈ ∂Sh, ehp is
the unit-norm normal vector to ∂Sh at p that is directed towards the interior
of Sh. Further, whenever it exists, the kth directional derivative of h at the
point p+ uehp in the direction ehp will be denoted by Dk

ehp
h(p+ uehp), with the

conventions D0
ehp

= Id and D1
ehp

= Dehp
.
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Denoting by g a real-valued function on Rd with support Sg (not necessarily
compact), we recall that the paper is devoted to the study of the asymptotic
behavior of dg(Ŝn, Sf ), with

dg(Ŝn, Sf ) =

∫
Rd

1Ŝn4Sf (x)g(x)dx.

The following basic assumptions on f and g will be supposed satisfied through-
out the paper:

Basic Assumptions

(a) The support Sf of f is compact, and f is of class C2 on
◦
Sf ;

(b) g is a positive, bounded, and continuous function on Rd;

(c) Sf ∩ Sg 6= ∅.

The case where Sf ∩ Sg = ∅ is excluded from the study since, for n large

enough, we then have dg(Ŝn, Sf ) = 0 with probability 1. The present study
is also limited to the case of a density f of class C2 for the sake of simplicity.
In fact, cases where f exhibits a higher regularity may also be addressed by
having recourse to the same flow of arguments as those exposed in the paper,
but at the expense of heavier technical developments.
Finally, we will let λg be the measure on Rd defined by

λg(A) =

∫
A

gdλ,

for any Borel set A ⊂ Rd. At last, the letter C will denote a positive constant,
the value of which may vary from line to line.

3 The general case

3.1 Convergence

We will make the following assumption on f :

Assumption 1

(a) The boundary ∂Sf of Sf is a smooth submanifold of Rd of codimension
1;

(b) The set [f > 0] is connected;
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(c) f > 0 on
◦
Sf .

Note that Assumption 1 never holds when the dimension d equals 1. However,
all the results stated herein are still valid in dimension one, in a sense made
precise in the remark below.

Remark 3.1 In dimension one, the set Sf is a closed interval with bound-
ary points a < b. In this case, all the results of the paper, which involve
integrations on ∂Sf with respect to the volume measure vσ, still hold when vσ
is replaced by the counting measure on {a} ∪ {b}, so that the integral may be
expressed as a sum.

Remark 3.2 First, Assumption 1-(b) on the connectedness of [f > 0] may
be relaxed to the assumption that the boundaries of the connected components
of [f > 0] are submanifolds of codimension 1 which do not overlap; see the
discussion in Remark 3.3 after Theorem 3.1.

Second, in the proofs of our results, we shall be led to consider sets of the form
[f ≤ t], for some small positive t. In this respect, Assumption 1-(c) ensures

that f does not vanish on the topological interior
◦
Sf of Sf . Consequently

under Assumption 1, the set [f ≤ t] is included in a tubular neighborhood of
∂Sf for t small enough, which allows for an identification of [f ≤ t] with a
subset of the normal bundle of ∂Sf .

By Assumption 1-(a), (∂Sf , σ) is a smooth Riemannian submanifold of Rd.
Note also that (∂Sf , σ) is a closed (i.e., compact and without boundary)
submanifold. Consequently, there exists a tubular neighborhood of ∂Sf of
radius ρ > 0 [see Appendix B], which implies the existence of an ε > 0 such
that, for all p ∈ ∂Sf and all v ∈ [0, ε], p+ vefp ∈ Sf .

As stated in the Basic Assumptions, the density f is of class C2 on
◦
Sf .

Indeed, it will be demonstrated next that the convergence rate of Ŝn to Sf
depends on the degree of smoothness of f on ∂Sf . For this reason, two cases
are investigated herein:

(i) The case where f is of class C0 on Rd with positive first directional
derivative Defp

f(p) for all p in ∂Sf , and

(ii) The case where f is of class C1 on Rd with positive second directional
derivative D2

efp
f(p) for all p in ∂Sf .
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Note that in the second case, the first directional derivative Defp
f(p) van-

ishes on the boundary by a continuity argument. The following assumptions,
which depend on some parameter k ∈ {1, 2}, summarize all the smoothness
constraints required on f . Despite their technical aspect, these requirements
are mild.

Assumption 2

(a) f is of class Ck−1 on Rd.

(b) There exists ε > 0 such that, for all p ∈ ∂Sf , the map u 7→ f(p+ uefp)
is of class Ck on [0, ε].

(c) There exists ε > 0 such that sup0≤u≤ε supp∈∂Sf |D
k

efp
f(p+ uefp)| <∞.

(d) supε>0 supx∈Sf :dist(x,∂Sf )≥ε ‖Hf(x)‖ <∞, where Hf(x) denotes the hes-
sian matrix of f at the point x.

(e) There exists ε > 0 such that inf0≤u≤ε infp∈∂Sf D
k

efp
f(p+ uefp) > 0.

We are now in a position to state our main result.

Theorem 3.1 Suppose that Assumption 1 and Assumption 2 hold for some
k ∈ {1, 2}. Then, if nrdn →∞ and nrd+kn → 0, we have, as n→∞,

(nrdn)1/k Edg(Ŝn, Sf )→
(π

2

)(k−1)/2

ω
−1/k
d

∫
∂Sf

g(p)[
Dk

efp
f(p)

]1/kdvσ(p),

where ωd denotes the volume of the unit ball of Rd.

For the related problem of estimating a density level set [f > t] with t >
0, Cadre (2006) obtains exact rates of convergence by use of the co-area
formula [Evans and Gariepy (1992)]. The limit constant turns out to be an
integral over the boundary of the actual level set of the reciprocal of the
norm of the gradient of f , with respect to the (d− 1)-dimensional Hausdorff
measure on Rd. Note that the integral in Theorem 3.1 may also be expressed
with respect to the (d − 1)-dimensional Hausdorff measure. Actually, on
a smooth submanifold M of Rd of codimension 1, the (d − 1)-dimensional
Hausdorff measure reduces to the Riemannian volume measure vσ induced by
the canonical injection i : M → Rd [see e.g., Chavel (1993, p. 126)]. However,
neither the proof nor the main result of Cadre (2006) apply in the present
context.
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Remark 3.3 If the set [f > 0] has a number m ≥ 2 of connected compo-
nents, all of whose satisfy Assumption 1, and if the boundaries of the con-
nected components are mutually disjoint, then a result similar to that of The-
orem 3.1 may be established. In such a case, the limit constant is expressed
as the sum of m integrals on the boundaries of the connected components with
respect to the induced Riemannian volume measure.

To illustrate the result of Theorem 3.1, consider for example the Epanech-
nikov probability density function defined for all x in the unit closed Eu-
clidean ball B(0, 1) by

f(x) = c0
(
1− ‖x‖2

)
,

and by 0 otherwise. Here, c0 is a normalizing constant set as

c0 =
[
ωd − dωd−1B

(3

2
, d
)]−1

,

where B(., .) is the beta function, and ω0 = 1 by definition. Clearly f is of
class C2 in the interior of Sf , and of class C0 on Rd since Defp

f(p) = 2c0 for

all p in ∂B(0, 1). For example, fix g ≡ 1, so that the loss reduces to the usual
geometrical criterion d1(Ŝn, Sf ) = λ(Ŝn∆Sf ). In this context, Theorem 3.1
reads as

nrdn Eλ(Ŝn∆Sf )→
1

2c0ωd
vσ
(
∂B(0, 1)

)
=
d

2

[
ωd − dωd−1B

(3

2
, d
)]
,

since vσ(∂B(0, 1)) = dωd.

Proof The proofs for cases k = 1 and k = 2 are similar. For the sake
of simplicity, we prove the result for the case k = 2 only. In this context,
the convergence occurs at speed

√
nrdn under the conditions nrdn → ∞ and

nrd+2
n → 0. We start the proof by the equalities

Edg(Ŝn, Sf ) = Eλg(Ŝn∆Sf )

= Eλg(Ŝn ∩ Scf ) + Eλg(Ŝcn ∩ Sf ). (3.1)

Consider now the set S̃n defined as

S̃n =
{
x ∈ Rd : dist(x, ∂Sf ) ≤ rn

}
.

9



Since Ŝn ∩ Scf ⊂ S̃n ∩ Scf with probability 1, we have

Eλg(Ŝn ∩ Scf ) =

∫
Scf

P(x ∈ Ŝn)g(x)dx

=

∫
Scf∩S̃n

P(x ∈ Ŝn)g(x)dx

≤ λ(Scf ∩ S̃n) sup
Rd

g.

By the Tubular Neighborhood Theorem [cf. Appendix B], there exists a
tubular neighborhood V(∂Sf , ρ) of ∂Sf of radius ρ > 0. Consequently, as
long as rn < ρ, which occurs for n larger than some integer n0, we have
Scf ∩ S̃n ⊂ V(∂Sf , ρ). In this case, using (B.1), the volume of Scf ∩ S̃n is
bounded above by supV(∂Sf ,ρ)

Θ(p, u)vσ(∂Sf )rn. Thus, we have just proved
that there exists a constant C > 0 such that

Eλg(Ŝn ∩ Scf ) ≤ Crn. (3.2)

Since nrd+2
n → 0, we conclude that√

nrdn Eλg(Ŝn ∩ Scf )→ 0 as n→∞. (3.3)

Let us now examine the second term in equality (3.1), namely Eλg(Ŝcn ∩Sf ).
To this aim, we introduce the function ψn, defined for all x ∈ Sf by

ψn(x) = rdnωdf(x) + rd+2
n Kn(x),

where Kn is a function defined in Lemma A.1 satisfying

sup
n

sup
x∈Sf
|Kn(x)| <∞. (3.4)

We have

Eλg(Ŝcn ∩ Sf ) =

∫
Sf

P(x /∈ Ŝn)g(x)dx

=

∫
Sf

[
1− P

(
X ∈ B(x, rn)

)]n
g(x)dx

=

∫
Sf

[
1− ψn(x)

]n
g(x)dx,

where the last equality follows from Lemma A.1. Denote by (εn) a sequence
of positive real numbers satisfying εn → 0 and

√
nrdnεn → ∞. Using the

notation

I =

∫
Sf∩[f≤εn]

[
1− ψn(x)

]n
g(x)dx, (3.5)
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we obtain ∣∣Eλg(Ŝcn ∩ Sf)− I∣∣ =

∫
[f>εn]

[
1− ψn(x)

]n
g(x)dx

≤
∫

[f>εn]

exp
[
− nψn(x)

]
g(x)dx,

where, in the last inequality, we have used the fact that 1− t ≤ exp(−t) for
t ∈ R. This leads, using the definition of ψn(x) and (3.4), to∣∣Eλg(Ŝcn ∩ Sf )− I∣∣ ≤ exp(−nrdnεnωd)

∫
[f>εn]

exp
(
nrd+2

n |Kn(x)|
)
g(x)dx

≤ C exp(−nrdnεnωd), (3.6)

since nrd+2
n → 0 as n→∞. Consequently, for n large enough,√

nrdn
∣∣Eλg(Ŝcn ∩ Sf )− I∣∣ ≤ C

√
nrdn exp(−nrdnεnωd)

≤ C
√
nrdn exp(−

√
nrdn), (3.7)

and this latter term tends to 0 since nrdn → ∞. Therefore, we only need to
deal with the asymptotic behavior of the term I.

Let V(∂Sf , ρ) be a tubular neighborhood of ∂Sf of radius ρ > 0, the existence
of which follows from the Tubular Neighborhood Theorem under Assumption
1.a. From Assumption 1.b, it follows that the set [f ≤ εn] is included in
V(∂Sf , ρ) for all n large enough. From now on, it is assumed in the remainder
of the proof that n is large enough for this inclusion to hold. Next, since n is
large enough, for all p ∈ ∂Sf , we define, as in (A.4), κfp(εn) as the distance
between p and the points x of [f = εn] such that the vector x−p is orthogonal
to ∂Sf . To simplify the notation, we write κp(ε) instead of κfp(ε), and ep for
the normal vector field instead of efp . From the identity (B.1), and since n is
larger enough, it follows that the integral I may be expressed as

I =

∫
∂Sf

I(p)dvσ(p), (3.8)

where, for all p ∈ ∂Sf , the term I(p) is defined as

I(p) =

∫ κp(εn)

0

[
1− ψn(p+ vep)

]n
g(p+ vep)Θ(p, v)dv

=
1√
nrdn

∫ √nrdnκp(εn)

0

exp

[
n log

(
1− ψn

(
p+

u√
nrdn

ep
))]

× g
(
p+

u√
nrdn

ep
)
Θ
(
p,

u√
nrdn

)
du. (3.9)
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According to Lemma A.2, for n large enough, supp∈∂Sf κp(εn) ≤ ρ. Applying
Lemma A.3, we obtain

I(p)

=
1√
nrdn

∫ √nrdnκp(εn)

0

exp
[
− u2ωd

2
D2
epf(p+ ξep)−

u4ω2
d

8n

(
D2
epf(p+ ξep)

)2
+ nrd+2

n Rn(p, u)
]
g
(
p+

u√
nrdn

ep
)
Θ
(
p,

u√
nrdn

)
du, (3.10)

where
ξ = ξ(n, p, u) ∈

(
0, κp(εn)

)
,

and Rn(p, u) satisfies

sup
n

sup
p∈∂Sf

sup
0≤u≤
√
nrdnκp(εn)

|Rn(p, u)| <∞.

Using the fact that, for each p ∈ ∂Sf , 0 ≤ ξ ≤ κp(εn) and supp∈∂Sf κp(εn)→ 0
as n → ∞ [by Lemma A.2], we are sure that, for n large enough, all points
p+ ξep fall in V(∂Sf , ρ). Consequently, by Assumption 2.e, there exists some
α > 0 independent of n such that, for n large enough,

inf
p∈∂Sf

D2
epf(p+ ξep) ≥ α. (3.11)

Thus, the Lebesgue dominated convergence Theorem may be applied to the
integral in (3.10). Since, by Lemma A.2,

√
nrdnκp(εn) → ∞, since g is

continuous, and since Θ is C∞ with Θ(p, 0) = 1 ∀p ∈ ∂Sf , we obtain, for each
p ∈ ∂Sf ,√

nrdn I(p)→
∫ +∞

0

exp
[
− u2ωd

2
D2
epf(p)

]
g(p)du as n→∞.

The limit above is equal to √
π

2ωd

g(p)√
D2
epf(p)

.

Using once again inequality (3.11) yields to

sup
n

sup
p∈∂Sf

√
nrdn I(p) <∞.
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As ∂Sf is compact, it has finite volume, i.e., vσ(∂Sf ) <∞, and we conclude
by the Lebesgue Theorem that√
nrdn I =

∫
∂Sf

√
nrdn I(p)dvσ(p)→

∫
∂Sf

√
π

2ωd

g(p)√
D2
epf(p)

dvσ(p) as n→∞.

Putting together (3.3), (3.7) and the limit above leads to the desired result.
�

3.2 Necessary condition on the radius

Theorem 3.2 Suppose that Sf is the closed unit Euclidean ball of Rd, and
that Assumption 2 holds for some k ∈ {1, 2}. Then, if nrd+kn → ∞, as
n→∞,

(nrdn)1/k Ed1(Ŝn, Sf )→∞.

Theorem 3.2 shows that the assumption nrd+kn → 0 of Theorem 3.1 is sharp.
If we restrict ourselves to choices of radius rn = O(n−s) for some s > 0, then
the condition of Theorem 3.1 becomes 1/(d+ k) < s < 1/d. In this context,
the best convergence rate, which corresponds to values of s close to 1/(d+k),
must be slower than O(n1/(d+k)).

Proof According to decomposition (3.1), it suffices to prove that

(nrdn)1/k Eλ(Ŝn ∩ Scf )→∞.

For simplicity, for all p ∈ ∂Sf , we write ep instead of efp . Denote by Sd−1 the
unit sphere in Rd. Clearly, by (B.1),

Eλ(Ŝn ∩ Scf ) =

∫
Scf

P(x ∈ Ŝn)dx

=

∫
Sd−1

∫ 0

−rn

[
1−

(
1− pn(p+ uep)

)n]
Θ(p, u)dudvσ(p),

where
pn(p+ uep) = P

(
dist(p+ uep, X) ≤ rn

)
,

and where X is a random variable with density f . Taking the inner integral
from −rn/2 yields the lower bound

Eλ(Ŝn ∩ Scf ) ≥
∫
Sd−1

∫ 0

−rn/2

[
1−

(
1− pn(p+ uep)

)n]
Θ(p, u)dudvσ(p).

13



Clearly, for each fixed p ∈ Sd−1, the map [−rn/2, 0] 3 u 7→ pn(p + uep) is
increasing. Thus, for each u ∈ [−rn/2, 0] and each p ∈ Sd−1, the quantity
pn(p + uep) is bounded from below by pn(p − (rn/2)ep), which in turn is
bounded from below, and uniformly in p, by a sequence pn such that pn ≥
Crd+kn for some constant C > 0 by Lemma A.5. Consequently,

Eλ(Ŝn ∩ Scf ) ≥ Cvσ
(
Sd−1

)rn
2

[
1− exp

(
n log(1− pn)

)]
=

C

2
vσ
(
Sd−1

)
rn

[
1− exp

(
− npn

log(1− pn)

−pn

)]
,

and so, for n large enough,[
1− exp

(
− npn

log(1− pn)

−pn

)]
≥ 1

2
,

since nrd+kn →∞ by assumption. Hence, for large n,

Eλ(Ŝn ∩ Scf ) ≥
C

4
vσ
(
Sd−1

)
rn,

and thus

(nrdn)1/k Eλ(Ŝn ∩ Scf ) ≥
C

4
vσ
(
Sd−1

)
(nrd+kn )1/k,

from which the result follows. �

4 The case Sg ⊂ Sf

An inspection of the limit term in Theorem 3.1 reveals that

(nrdn)1/k Edg(Ŝn, Sf )→ 0 as n→∞,

as soon as ∂Sf ⊂ (
◦
Sg)

c. In this case, the rate (nrdn)1/k is therefore sub-
optimal, and this section aims at investigating the true convergence rate.
For the same reason that the case Sf ∩Sg = ∅ was excluded, the requirement

∂Sf ⊂ (
◦
Sg)

c means that we can assume that Sg ⊂ Sf . Thus, from now on,
this latter condition will be supposed fulfilled. At this stage, two sub-cases,
leading to different limit theorems, have to be considered:

(i) The case ∂Sf ∩ ∂Sg 6= ∅, and

(ii) The case ∂Sf ∩ ∂Sg = ∅.

14



From a statistical perspective, the sub-case (i), which allows for g ≡ f , is
the most important. Indeed, recall that if X denotes a random variable with
density f independent of the sample, the choice g ≡ f yields the criterion

Edf (Ŝn, Sf ) = P(X /∈ Ŝn).

However, for the sake of completeness, we will also discuss in detail the sub-
case (ii).

4.1 The sub-case ∂Sf ∩ ∂Sg 6= ∅
We first introduce some smoothness assumptions on g, depending on a pa-
rameter k ∈ {1, 2}.

Assumption 3

(a) There exists ε > 0 such that, for all p ∈ ∂Sf , the map u 7→ g(p+ uefp)
is of class Ck on [0, ε].

(b) There exists ε > 0 such that sup0≤u≤ε supp∈∂Sf |D
k

efp
g(p+ uefp)| <∞.

As explained in Remark 3.2 and Remark 3.3, Assumption 1 may be relaxed.

Theorem 4.1 Suppose that ∂Sf∩∂Sg 6= ∅, and that Assumption 1, Assump-
tion 2, and Assumption 3 hold for some k ∈ {1, 2}. Moreover, suppose that,

for all p ∈ ∂Sf , Dk−1

efp
g(p) = 0. Then, if nrdn → ∞ and nr

d+k/(k+1)
n → 0, we

have, as n→∞,

(nrdn)(k+1)/k Edg(Ŝn, Sf )→
(√

π

8

)k−1

ω
−(k+1)/k
d

∫
∂Sf

Dk

efp
g(p)[

Dk

efp
f(p)

](k+1)/k
dvσ(p).

Set g ≡ f and denote by X a random variable with density f independent
of the sample. In this case, Theorem 4.1, applied for example with k = 1,
yields the following simple result

(nrdn)2 P(X /∈ Ŝn)→ ω−2
d

∫
∂Sf

[
Defp

f(p)
]−1

dvσ(p). (4.1)

We emphasize that the consistency result (4.1) has interesting statistical
consequences regarding the detection problem stated in the Introduction.
Indeed, it allows for a control of the asymptotic behavior of the false alarm
probability. For example, to guarantee a false alarm level α ∈ (0, 1) given

15



beforehand, with a radius rn ≈ 1/n1/(d+1/2) (up to a logarithmic factor), the
number of observations should approximately satisfy

n ≈
(

1

αω2
d

∫
∂Sf

[
Defp

f(p)
]−1

dvσ(p)

)d+1/2

.

Theorem 4.1 may be obtained by recursing to arguments similar to the ones
advanced in the proof of Theorem 3.1. For this reason, we only sketch the
proof.

Sketch of proof According to (3.1) and (3.2), one only needs to prove
that

(nrdn)(k+1)/k Eλg(Ŝcn∩Sf )→
(√

π

8

)k−1

ω
−(k+1)/k
d

∫
∂Sf

Dk

efp
g(p)[

Dk

efp
f(p)

](k+1)/k
dvσ(p).

Denote by (εn) a sequence of positive real numbers satisfying εn → 0 and
(nrdn)1/kεn → ∞. For such an εn, let I be defined as in (3.5) for n large

enough. Since nr
d+k/(k+1)
n → 0, inequality (3.6) remains true. Therefore, we

only need to deal with the asymptotic behavior of the term I. Following
(3.8), I may be written as

I =

∫
∂Sf

I(p)dvσ(p),

where I(p) is defined by (3.9). For the sake of simplicity, we now consider
the case k = 2 as in the proof of Theorem 3.1. Then, representation (3.10) of
I(p) also holds in this context for n large enough. Since g(p) = Depg(p) = 0
for all p ∈ ∂Sf , we deduce from Assumption 3 and an expansion of g that
for all p ∈ ∂Sf :

I(p)

=
1√
nrdn

∫ √nrdnκp(εn)

0

exp
[
− u2ωd

2
D2
epf(p+ ξep)−

u4ω2
d

8n

(
D2
epf(p+ ξep)

)2
+ nrd+2

n Rn(p, u)
] u2

2nrdn
D2
epg(p+ χep)Θ

(
p,

u√
nrdn

)
du,

where

ξ = ξ(n, p, u) ∈
(
0, κp(εn)

)
, χ = χ(n, p, u) ∈

(
0, κp(εn)

)
,
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and Rn(p, u) satisfies

sup
n

sup
p∈∂Sf

sup
0≤u≤
√
nrdnκp(εn)

|Rn(p, u)| <∞.

Using similar arguments as in the end of proof of Theorem 3.1, we obtain for
all p ∈ ∂Sf :

(nrdn)3/2I(p)→ 1

2
D2
epg(p)

∫ ∞
0

u2 exp
[
− u2ωd

2
D2
epf(p)

]
du.

The limit above is equal to√
π

8
ω
−3/2
d

D2
epg(p)[

D2
epf(p)

]3/2 .
We then conclude as in the proof of Theorem 3.1. �

4.2 The sub-case ∂Sf ∩ ∂Sg = ∅
We introduce the function f defined on Sg by

f(x) = f(x)− inf
Sg
f, x ∈ Sg.

The support Sf of f is itself compact. Moreover,

∂Sf = {x ∈ Sg : f(x) = inf
Sg
f} = arg min

Sg
f|Sg .

We will need the following assumptions on f .

Assumption 4

(a) The boundary ∂Sf of Sf is a smooth submanifold of Rd of codimension
1;

(b) The set [f > 0] is connected;

(c) f > 0 on
◦
Sg.

Assumption 5 There exists ε > 0 such that inf0≤u≤ε infp∈∂Sf Defp
f(p +

uefp) > 0.
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By analogy with Assumption 1, Assumption 4 does not hold when the di-
mension d equals one, but the result remains valid in the sense exposed in
Remark 3.1 with f in place of f . Furthermore, the simple connectedness
assumption of [f̄ > 0] may be relaxed as explained in Remark 3.2 and Re-
mark 3.3. Basically, Assumption 5 means that f has no flat part on the
boundary of Sf .

Theorem 4.2 Suppose that ∂Sf ∩ ∂Sg = ∅, and that Assumption 4 and
Assumption 5 hold. Then, if nrdn →∞, nrd+2

n → 0, and nr2d
n → 0, we have,

as n→∞,

nrdn exp(nrdnωd inf
Sg
f) Edg(Ŝn, Sf )→ ω−1

d

∫
∂Sf

g(p)

D
efp
f(p)

dvσ(p).

Observe that the limit vanishes when Sf = Sg since, in such a case, we have
g(p) = 0 for all p ∈ ∂Sf . In this context, for a sufficiently smooth g, it is
straightforward to improve the result and to obtain the exact rate of conver-
gence, which just differs from above by a power of nrdn. We leave the details
to the reader.

Note that if Assumption 4 proves useful for establishing Theorem 4.2, it
does not allow for those situations where, in dimension 2, the set ∂Sf =
arg minSg f|Sg is finite. However, when this occurs, it is still possible to derive
an exponential rate of convergence. For example, suppose that f has no flat

part on f
−1

([0, ε]), for some ε > 0. Then one can deduce from the coarea
Formula [see Evans and Gariepy (1992)], from some of the arguments used
in the proof of Theorem 4.2, and under the same conditions on the radius,
that

lim sup
n

nrdn exp(nrdnωd inf
Sg
f) Edg(Ŝn, Sf ) ≤ CH

(
∂Sf

)
,

for some C > 0. Here, H stands for the (d − 1)-dimensional Hausdorff
measure on Rd. When H(∂Sf ) = 0, a situation which occurs for instance
when d ≥ 2 and ∂Sf is finite, the result reads

nrdn exp(nrdnωd inf
Sg
f) Edg(Ŝn, Sf )→ 0.
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Proof We have

Edg(Ŝn, Sf ) = Eλg(Ŝn∆Sf )

= Eλg
(
Ŝcn ∩ Sf

)
(since Sg ⊂ Sf )

=

∫
Sg

P(x /∈ Ŝn)g(x)dx

=

∫
Sg

[
1− P

(
X ∈ B(x, rn)

)]n
g(x)dx.

According to Lemma A.6, for all x ∈ Sg,

ϕn(x) = P
(
X ∈ B(x, rn)

)
= rdnωdf(x) + rd+2

n Jn(x),

where the quantity Jn(x) satisfies supn supx∈Sg |Jn(x)| < ∞. Now, let (εn)

be a sequence of positive real numbers satisfying εn → 0,
√
nrdnεn →∞, and

denote by I the integral

I =

∫
[f≤εn]

[
1− ϕn(x)

]n
g(x)dx.

Recalling that f is only defined on Sg, we obtain

|Edg
(
Ŝn, Sf

)
− I| =

∫
[f>εn]

[
1− ϕn(x)

]n
g(x)dx

≤
∫

[f>εn]

exp
[
− nϕn(x)

]
g(x)dx

(since 1− t ≤ exp(−t) for t ∈ R),

≤ v−1
n exp(−nrdnωdεn)

∫
[f>εn]

exp
(
nrd+2

n |Jn(x)|
)
g(x)dx,

where
vn = exp(nrdnωd inf

Sg
f).

Since nrd+2
n → 0, since supn supx∈Sg |Jn(x)| <∞, and since g is bounded, we

obtain

vn|Edg(Ŝn, Sf )− I| ≤ C exp(−nrdnωdεn)

≤ C exp(−
√
nrdn), (4.2)
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because
√
nrdnεn → ∞ as n → ∞. Therefore, as nrdn exp(−

√
nrdn) → 0, we

only need to focus on the term I.

As in the proof of Theorem 3.1, for n large enough, the set [f ≤ εn] is con-
tained in a tubular neighborhood of ∂Sf . In this case, any x ∈ [f ≤ εn] may

be expressed in the form p + uefp , where p ∈ ∂Sf . For ease of notation, we

will write, for p ∈ ∂Sf , ep instead of efp and, for ε > 0, κp(ε) instead of κfp(ε)

[recall the definition of κfp(ε) in (A.4)].

According to Assumption 4 and identity (B.1), we have

I =

∫
∂Sf

I(p)dvσ(p), (4.3)

where, for all p ∈ ∂Sf ,

I(p) =

∫ κp(εn)

0

[
1− ϕn(p+ vep)

]n
g(p+ vep)Θ(p, v)dv.

Using a change of variable leads to the equality

I(p) =
1

nrdn

∫ nrdnκp(εn)

0

exp

[
n log

(
1−ϕn

(
p+

u

nrdn
ep
))]

g
(
p+

u

nrdn
ep
)
Θ
(
p,

u

nrdn

)
du.

By Lemma A.7, supp∈∂Sf κp(εn) → 0 as n → ∞. Thus, the equality above

together with Lemma A.8 show that

nrdnI(p) = v−1
n

∫ nrdnκp(εn)

0

exp
[
− uωdDepf(p+ ξ

′
ep) + n(r2d

n + rd+2
n )R

′

n(p, u)
]

× g
(
p+

u

nrdn
ep
)
Θ
(
p,

u

nrdn

)
du,

where ξ
′
= ξ

′
(n, p, u) ∈

(
0, κp(εn)

)
and where

sup
n

sup
p∈∂Sf

sup
0≤u≤nrdnκp(εn)

|R′n(p, u)| <∞.

Consequently,

nrdnvnI(p) =

∫ nrdnκp(εn)

0

exp
[
− uωdDepf(p+ ξ

′
ep) + n(r2d

n + rd+2
n )R

′

n(p, u)
]

× g
(
p+

u

nrdn
ep
)
Θ
(
p,

u

nrdn

)
du. (4.4)
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We deduce from Lemma A.7 and Assumption 5 that there exists an α > 0
such that, for n large enough,

inf
p∈∂Sf

Depf(p+ ξ
′
ep) ≥ α. (4.5)

Recall that g is bounded, that n(r2d
n + rd+2

n ) → 0, and that Θ is C∞ with
Θ(p, 0) = 1. In particular, this implies that the domination condition of
Lebesgue Theorem is satisfied by the function under the integral in (4.4).
Moreover, g is continuous, and nrdnκp(εn) → ∞ [Lemma A.7]. These facts,
together with Lebesgue Theorem show that, for all p ∈ ∂Sf ,

nrdnvnI(p)→
∫ ∞

0

exp
[
− uωdDepf(p)

]
g(p)du = ω−1

d

g(p)

Depf(p)
.

Moreover, using (4.4) and (4.5), we have

sup
n

sup
p∈∂Sf

nrdnvnI(p) <∞.

Since vσ(∂Sf ) <∞ by compacity of ∂Sf , it follows from Lebesgue Theorem
and identity (4.3) that

nrdnvnI =

∫
∂Sf

nrdnvnI(p)dvσ(p)→ ωd
−1

∫
∂Sf

g(p)

Depf(p)
dvσ(p) as n→∞.

Finally, using (4.2), we conclude that

nrdnvn Edg
(
Ŝn, Sf

)
→ ωd

−1

∫
∂Sf

g(p)

Depf(p)
dvσ(p),

as desired. �

A Some auxiliary results

A.1 Auxiliary results for the proof of Theorem 3.1

Lemma A.1 Suppose that Assumption 1 and Assumption 2.a− 2.d hold for
some k ∈ {1, 2}. Then, for all x ∈ Sf , there exists a quantity Kn(x) such
that supn supx∈Sf |Kn(x)| <∞ and

P
(
X ∈ B(x, rn)

)
= rdnωdf(x) + rd+kn Kn(x),

where X is a random variable with density f .
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Proof Let us define the set In as

In = {x ∈ Sf : dist(x, ∂Sf ) > rn}.

Suppose first that x ∈ In. Since f is twice continuously differentiable on
◦
Sf

and B(x, rn) ⊂
◦
Sf , one has, for all u ∈ B(x, rn), by Taylor Formula,

f(u) = f(x) + (u− x)t∇f(x) +
1

2
(u− x)tHf(ξ)(u− x),

for some ξ = ξ(x, u) in the interior of B(x, rn), where ∇f(x) stands for the
gradient of f at the point x. Observe that, by symmetry,∫

B(x,rn)

(u− x)t∇f(x)du = 0,

so that

P
(
X ∈ B(x, rn)

)
=

∫
B(x,rn)

f(u)du = rdnωdf(x) + rd+2
n Jn(x), (A.1)

where

Jn(x) =
1

rd+2
n

∫
B(x,rn)

(u− x)tHf(ξ)(u− x)du

satisfies supn supx∈In |Jn(x)| <∞ according to Assumption 2.d.

On the other hand, suppose now that x ∈ Sf − In. By Assumption 1, each
u ∈ B(x, rn) ∩ Sf may be expressed as u = p + αefp , where p ∈ ∂Sf and
0 ≤ α ≤ Crn. Using Assumption 2.a and Assumption 2.b, we deduce that

f(u) =
αk

k
Dk

efp
f(p+ ξefp),

for some ξ ∈ (0, α). But, by Assumption 2.c,

sup
n

sup
p∈∂Sf

|Dk

efp
f(p+ ξefp)| <∞,

so that, consequently,
f(u) ≤ Crkn (A.2)

for some constant C > 0. Therefore, in this case,

P
(
X ∈ B(x, rn)

)
=

∫
B(x,rn)∩Sf

f(u)du ≤ Crd+kn . (A.3)
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Using (A.1), we can now write, for all x ∈ Sf ,

P
(
X ∈ B(x, rn)

)
=
[
rdnωdf(x) + rd+2

n Jn(x)
]
1In(x)

+ P
(
X ∈ B(x, rn)

)
1Icn(x)

= rdnωdf(x) + rd+kn Kn(x),

where Kn is defined, for all x ∈ Sf , by

Kn(x) = r2−k
n Jn(x)1In(x)− r−kn ωdf(x)1Icn(x) + r−d−kn P

(
X ∈ B(x, rn)

)
1Icn(x).

Clearly, Kn satisfies the required condition supn supx∈Sf |Kn(x)| < ∞ ac-
cording to (A.2) and (A.3). �

Definition of κhp(ε). Let D ⊂ Rd and h : D → R+ be a function with
compact support Sh and smooth boundary ∂Sh. Fix ε0 > 0, small enough
such that there exists a tubular neighborhood of ∂Sh of radius ρ containing
the set [h ≤ ε0]. For all p ∈ ∂Sh and 0 < ε < ε0, we define κhp(ε) by

κhp(ε) = dist
(
p, [h = ε] ∩

{
x ∈ Rd : x = p+ vehp , v ∈ [0, ρ]

})
. (A.4)

In other words, κhp(ε) represents the minimum distance between p and the
points x of [h = ε] such that the vector x−p is orthogonal to ∂Sh. Note that

when h > 0 on
◦
Sh and ε0 is small enough, such a point x is unique.

Whenever h ≡ f , the behavior of κfp(ε) with respect to p and ε is controlled
by the following lemma.

Lemma A.2 Suppose that Assumption 1, Assumption 2.a − 2.c, and As-
sumption 2.e hold for some k ∈ {1, 2}. Then,

sup
p∈∂Sf

κfp(ε)→ 0 as ε→ 0.

Moreover, if ε0 > 0 is small enough, there exists C > 0 such that, for all
p ∈ ∂Sf ,

κfp(ε) ≥ Cε, ∀ε ∈ (0, ε0).

Proof By Assumption 1, there exists a tubular neighborhood of ∂Sf of
radius ρ > 0. Without loss of generality, ε0 may be chosen in such a way
that the set [f ≤ ε0] ⊂ V(∂Sf , ρ) [This comes from the simple-connectedness
of [f > 0] by Assumption 1]. Furthermore, by Assumption 2.c and Assump-
tion 2.e, one can assume that sup0≤u≤ρ supp∈∂Sf |D

k

efp
f(p + uefp)| < ∞ and
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inf0≤u≤ρ infp∈∂Sf D
k

efp
f(p + uefp) > 0 . Then, for all ε ≤ ε0 and all p ∈ ∂Sf ,

we have κfp(ε) ≤ ρ.

Observe now that, for all p ∈ ∂Sf and ε ≤ ε0, f(p + κfp(ε)e
f
p) = ε. Conse-

quently, according to Assumption 2.a and Assumption 2.b, we deduce from
Taylor Formula that

ε = f(p+ κfp(ε)e
f
p) =

κfp(ε)
k

k
Dk

efp
f(p+ ξefp),

for some ξ ∈ (0, κfp(ε)). Taking the infimum over ξ, and next, the supremum
over p in the above equation, yields the existence of a constant C > 0 such
that, for all ε ≤ ε0,

ε ≥ C sup
p∈∂Sf

κfp(ε)
k.

This proves the first statement of the lemma. Finally, using the fact that ρ
can be chosen smaller than 1, a similar argument shows that there exists a
constant C > 0 such that

Cε ≤ sup
p∈∂Sf

κfp(ε),

for all ε ≤ ε0. �

Lemma A.3 Suppose that Assumption 1 and Assumption 2.a− 2.d hold for
some k ∈ {1, 2}. Let γ0 > 0 be small enough. Then, for all p ∈ ∂Sf and
0 ≤ u ≤ (nrdn)1/kγ0, one has, with the notation of Lemma A.1,

log
[
1− rdnωdf

(
p+

u

(nrdn)1/k
efp
)
− rd+kn Kn

(
p+

u

(nrdn)1/k
efp
)]

= −u
kωd
kn

Dk

efp
f
(
p+ ξefp

)
− 1

2

u2kω2
d

k2n2

[
Dk

efp
f
(
p+ ξefp

)]2
+ rd+kn Rn(p, u),

for some ξ = ξ(n, p, u) ∈ (0, γ0) and some Rn(p, u) satisfying

sup
n

sup
0≤u≤(nrdn)1/kγ0

sup
p∈∂Sf

∣∣Rn(p, u)
∣∣ <∞.

Proof In the sequel, ep stands for efp and γ0 > 0 is chosen such that
p+ uep ∈ Sf for all p ∈ ∂Sf and 0 ≤ u ≤ γ0. Let ψn be the function defined
for all x ∈ Sf by

ψn(x) = rdnωdf(x) + rd+kn Kn(x),
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where Kn(x) is as in Lemma A.1. Using the expansion

log(1− ε) = −ε− ε2

2
+ O(ε3),

we obtain, for all p ∈ ∂Sf and 0 ≤ u ≤ (nrdn)1/kγ0,

log
[
1− ψn

(
p+

u

(nrdn)1/k
ep
)]

= −ψn
(
p+

u

(nrdn)1/k
ep
)
− 1

2
ψ2
n

(
p+

u

(nrdn)1/k
ep
)

+ rd+kn Rn,1(p, u), (A.5)

where Rn,1(p, u) satisfies

sup
n

sup
0≤u≤(nrdn)1/kγ0

sup
p∈∂Sf

∣∣Rn,1(p, u)
∣∣ <∞

according to Lemma A.1.

On the one hand, by Assumption 2.a, by Assumption 2.b, and by Taylor
Formula, we obtain, for all p ∈ ∂Sf ,

ψn
(
p+

u

(nrdn)1/k
ep
)

= rdnωdf
(
p+

u

(nrdn)1/k
ep
)

+ rd+kn Kn

(
p+

u

(nrdn)1/k
ep
)

=
ukωd
kn

Dk
epf(p+ ξep) + rd+kn Kn

(
p+

u

(nrdn)1/k
ep
)
, (A.6)

for some ξ = ξ(n, p, u) ∈ (0, γ0).

On the other hand, employing Lemma A.1,

ψ2
n

(
p+

u

(nrdn)1/k
ep
)

= r2d
n ω

2
df

2
(
p+

u

(nrdn)1/k
ep
)

+ rd+kn Rn,2(p, u),

where the quantity Rn,2(p, u) satisfies

sup
n

sup
0≤u≤(nrdn)1/kγ0

sup
p∈∂Sf

∣∣Rn,2(p, u)
∣∣ <∞.

An application of Taylor Formula leads to

ψ2
n

(
p+

u

(nrdn)1/k
ep
)

= r2d
n ω

2
d

[ uk

knrdn
Dk
epf(p+ ξep)

]2
+ rd+kn Rn,2(p, u)

=
u2kω2

d

k2n2

[
Dk
epf(p+ ξep)

]2
+ rd+kn Rn,2(p, u). (A.7)
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Finally, setting

Rn(p, u) = Rn,1(p, u)−Kn

(
p+

u

(nrdn)1/k
ep
)
− 1

2
Rn,2(p, u),

we deduce from (A.5), (A.6), and (A.7) that

log
[
1− ψn(p+

u

(nrdn)1/k
ep)
]

= −u
kωd
kn

Dk
epf
(
p+ ξep

)
− u2kω2

d

2k2n2

[
Dk
epf
(
p+ ξep

)]2
+ rd+kn Rn(p, u),

where Rn(p, u) satisfies

sup
n

sup
0≤u≤(nrdn)1/kγ0

sup
p∈∂Sf

∣∣Rn(p, u)
∣∣ <∞.

�

A.2 Auxiliary results for the proof of Theorem 3.2

We consider in this section a probability density f with support the closed
unit Euclidean ball of Rd. Let Sd−1 be the unit sphere of Rd. The following
technical lemma, which is stated without proof, is elementary and may be
obtained by tedious but easy calculus.

Lemma A.4 Let a ∈ (0, rn), where rn < 1. Then,

(i) The trace of B(p− aefp , rn) in Sd−1 is the geodesic ball, further denoted
by Bσ(p, ρ(a, rn)), in Sd−1 of center p and radius ρ(a, rn) given by:

ρ(a, rn) = arccos

(
(1 + a)2 + 1− r2

n

2(1 + a)

)
.

In particular, ρ
(
rn
2
, rn
)

= arccos
(

1− 3
4

r2n
2+rn

)
and there exists a con-

stant C > 0 such that
ρ
(rn

2
, rn

)
> Crn,

for all 0 < rn < 1.

(ii) Let ρn = ρ
(
rn
2
, rn
)
. For all p ∈ Sd−1, and for all q ∈ Bσ(p, ρn), the

trace of the half-line {q + vefq : v ≥ 0} in ∂B(p− rn
2
efp , rn) is the point

q + ω(q, rn)efq of Rd, where ω(q, rn) ≥ 0 does not depend on p. For a
fixed value of rn, the map q 7→ ω(q, rn) is a decreasing function of the

26



geodesic distance dσ(q, p) on Sd−1. Moreover, there exists a constant
C > 0 such that

ω(q, rn) > Crn,

for all q with dσ(q, p) ≤ ρn/2 and for all 0 < rn < 1.

Lemma A.5 Suppose that Assumption 2.a − 2.e hold for some k ∈ {1, 2}.
Let 0 < rn < 1. For all p ∈ Sd−1, let pn(p− rn

2
efp) = P(dist(p− rn

2
efp , X) ≤ rn),

where X is a random variable with density f . Then there exists a constant
C > 0 such that

pn

(
p− rn

2
efp

)
≥ Crd+kn ,

for all p ∈ Sd−1 and for all 0 < rn < 1.

Proof In the sequel, for all q ∈ Sd−1, eq stands for efq . Using the notation
of Lemma A.4, we have by (B.1),

pn

(
p− rn

2
efp

)
=

∫
Bσ(p,ρn)

∫ ω(q,rn)

0

f(q + ueq)Θ(q, u)dudvσ(q)

≥
∫
Bσ(p,ρn/2)

∫ ω(q,rn)

0

f(q + ueq)Θ(q, u)dudvσ(q).

By Lemma A.4, there exists a constant C > 0 such that ω(q, rn) ≥ Crn for
all q ∈ Bσ(p, ρn/2), and for all rn. Consequently,

pn

(
p− rn

2
efp

)
≥
∫
Bσ(p,ρn/2)

∫ Crn

0

f(q + ueq)Θ(q, u)dudvσ(q).

Now differentiating k-times yields the inequalities

pn

(
p− rn

2
efp

)
≥

∫
Bσ(p,ρn/2)

∫ Crn

0

Dk
eqf(q + ξeq)u

kΘ(q, u)dudvσ(q)

≥
∫
Bσ(p,ρn/2)

Dk
eqf(q + ξeq)

Ck+1

k + 1
rk+1
n dvσ(q)

≥ Cvσ
(
Bσ(p, ρn/2)

)
rk+1
n

≥ Cωd−1
σ (ρn/2)d−1rk+1

n ,

where ωd−1
σ is the volume of the geodesic ball in Sd−1 with radius 1. By

Lemma A.4, there exists another constant C > 0 such that ρ > Crn and
ω(pρ) > Crn. This leads to the desired result. �
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A.3 Auxiliary results for the proof of Theorem 4.2

Lemma A.6 Suppose that Sg ⊂ Sf and ∂Sf∩∂Sg = ∅. Then, for all x ∈ Sg,
there exists a quantity Jn(x) such that supn supx∈Sg |Jn(x)| <∞ and

P
(
X ∈ B(x, rn)

)
= rdnωdf(x) + rd+2

n Jn(x),

where X is a random variable with density f .

Proof Since Sg ⊂ Sf and ∂Sf ∩ ∂Sg = ∅, for all x ∈ Sg and all n large

enough, the balls B(x, rn) are contained in
◦
Sf . Recalling equality (A.1), the

result is a straightforward consequence from the fact that f is twice contin-

uously differentiable on
◦
Sf . �

The proofs of Lemma A.7 and Lemma A.8 below are similar to the proofs
of Lemma A.2 and Lemma A.3, respectively. Recall that κfp(ε) is defined in
(A.4).

Lemma A.7 Suppose that Sg ⊂ Sf and ∂Sf ∩ ∂Sg = ∅, and that Assump-
tion 4 and Assumption 5 hold. Then,

sup
p∈∂Sf

κfp(ε)→ 0 as ε→ 0.

Moreover, if ε0 > 0 is small enough, there exists C > 0 such that, for all
p ∈ ∂Sf ,

κfp(ε) ≥ Cε, ∀ε ∈ (0, ε0).

Lemma A.8 Suppose that Sg ⊂ Sf and ∂Sf ∩ ∂Sg = ∅, and that Assump-
tion 4 holds. Let γ0 > 0 be small enough. Then, for all p ∈ ∂Sf and

0 ≤ u ≤ nrdnγ0, one has, with the notation of Lemma A.6,

log
[
1− rdnωdf

(
p+

u

nrdn
efp
)
− rd+2

n Jn
(
p+

u

nrdn
efp
)]

= −rdnωd inf
Sg
f − uωd

n
D
efp
f
(
p+ ξ

′
efp
)

+ (r2d
n + rd+2

n )R
′

n(p, u),

for some ξ
′
= ξ

′
(n, p, u) ∈ (0, γ0) and some R

′
n(p, u) satisfying

sup
n

sup
0≤u≤nrdnγ0

sup
p∈∂Sf

∣∣R′n(p, u)
∣∣ <∞.
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B Geometry

Let (M,σ) be a smooth, closed (i.e., compact and without boundary), Rie-
mannian submanifold of Rd, with Riemannian metric σ taken as σ = i∗δ,
where i : M → Rd is the canonical injection, and where δ is the Euclidean
metric on Rd, i.e., σ is the pullback of δ by i. The Riemannian volume mea-
sure on (M,σ) will be denoted by vσ.

Let TpM be the tangent space to M at p, and let TM be the tangent bundle
of M . For all p ∈ M , TpM may be considered as a subspace of Rd via the
canonical identification of TpRd with Rd itself. Via this identification, the
normal space TpM

⊥ to M at p is the orthogonal complement of TpM in Rd.
The normal bundle of M in Rd is defined by TM⊥ = ∪p∈MTpM⊥, with bun-
dle projection map π : TM⊥ → M defined by π〈p, v〉 = p, i.e., each element
< p, v > of TM⊥ is mapped on p by π.

Now let θ : TM⊥ → Rd be given by θ〈p, v〉 = p+v. Also let TM⊥
ε = {〈p, v〉 ∈

TM⊥ : ‖v‖ < ε}. Then the Tubular Neighborhood Theorem [see e.g., Bredon
(1993, p. 93)] states that there exists an ε > 0 such that θ : TM⊥

ε → Rd is a
diffeomorphism onto the neighborhood V(M, ε) = {x ∈ Rd : dist(x,M) < ε}
of M in Rd, which is called a tubular neighborhood of radius ε of M in Rd.

Denote by λd the Lebesgue measure on Rd. On TM⊥
ε , there is the canonical

measure vg ⊗ λ1 defined by

(vg ⊗ λ1)(B) =

∫
π(B)

λ1
(
π−1(p)

)
dvσ(p),

for all Borel set B ⊂ TM⊥
ε . There is also on TM⊥

ε the measure θ∗λd, i.e.,
the pullback of λd on Rd by θ. Now let Θ ∈ C∞(TM⊥

ε ) be the function such
that d(θ∗λd) = Θd(vσ ⊗ λ1). This function satisfies Θ(< p, 0 >) = 1. Then,
given an integrable function ϕ on Rd, its integral on a tubular neighborhood
of M with respect to λd may be expressed as∫

V(M,ε)

ϕ(x)dλd(x) =

∫
TM⊥ε

(ϕ ◦ θ)(< p, v >)d(vσ ⊗ λ1)(< p, v >)

=

∫
M

∫
u∈TpM⊥:‖u‖<ε

ϕ(p+ u)Θ(p, u)dλ1(u)dvσ(p).

Introducing a unit-norm section {ep : p ∈ M} of TM⊥, i.e., a continuous
unit-norm normal vector field on M , yields the more convenient expression:∫

V(M,ε)

ϕ(x)dλd(x) =

∫
M

∫ ε

−ε
ϕ(p+ uep)Θ(p, u)dudvσ(p). (B.1)
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