Exact Rates in Density Support Estimation

Gérard BIAU ${ }^{\mathrm{a}}$, Benoît CADRE ${ }^{\mathrm{b}}$ and Bruno PELLETIER ${ }^{\text {c,* }}$
${ }^{\text {a }}$ LSTA \& LPMA
Université Pierre et Marie Curie - Paris VI
Boîte 158, 175 rue du Chevaleret
75013 Paris, France
biau@ccr.jussieu.fr
b IRMAR, ENS Cachan Bretagne, CNRS, UEB
Campus de Ker Lann
Avenue Robert Schuman
35170 Bruz, France
Benoit.Cadre@bretagne.ens-cachan.fr
${ }^{\text {c }}$ Institut de Mathématiques et de Modélisation de Montpellier UMR CNRS 5149, Equipe de Probabilités et Statistique Université Montpellier II, CC 051
Place Eugène Bataillon, 34095 Montpellier Cedex 5, France pelletier@math.univ-montp2.fr

Abstract

Let f be an unknown multivariate probability density with compact support S_{f}. Given n independent observations X_{1}, \ldots, X_{n} drawn from f, this paper is devoted to the study of the estimator \hat{S}_{n} of S_{f} defined as unions of balls centered at the X_{i} and of common radius r_{n}. To measure the proximity between \hat{S}_{n} and S_{f}, we employ a general criterion d_{g}, based on some function g, which encompasses many statistical situations of interest. Under mild assumptions on the sequence $\left(r_{n}\right)$ and some analytic conditions on f and g, the exact rates of convergence of $d_{g}\left(\hat{S}_{n}, S_{f}\right)$ are obtained using tools from Riemannian geometry. The conditions on the radius sequence are found to be sharp and consequences of the results are discussed from a statistical perspective.

Index Terms - Support estimation, Nonparametric statistics, Exact rate of convergence, Riemannian geometry, Tubular neighborhood.

AMS 2000 Classification: 62G05, 62G20.

[^0]
1 Introduction

Let f be an unknown probability density function defined with respect to the Lebesgue measure on \mathbb{R}^{d}. This paper is concerned with the problem of estimating the support of f, i.e., the closed set

$$
S_{f}=\overline{\left\{x \in \mathbb{R}^{d}: f(x)>0\right\}},
$$

given a random sample X_{1}, \ldots, X_{n} drawn from f. Here and later, \bar{A} means the closure of the set A. Since the earlier works of Rényi and Sulanke (1963, 1964) and Geffroy (1964), the problem of support estimation has been considered by several authors [see, e.g., Chevalier (1976), Devroye and Wise (1980), Grenander (1981), Cuevas (1990), Korostelev and Tsybakov (1993a, 1993b), Härdle, Park and Tsybakov (1995), Korostelev, Simar and Tsybakov (1995), Mammen and Tsybakov (1995), Cuevas and Fraiman (1997), Gayraud (1997), Baíllo, Cuevas and Justel (2000), and Klemelä (2004)]. The application scope is vast, as support estimation is routinely employed across the entire and diverse range of applied statistics, including problems in medical diagnosises, machine condition monitoring, marketing or econometrics [see the discussion in Baíllo, Cuevas and Justel (2000) and the references therein]. In closed connection with the related topic of estimating a density level set [Polonik (1995), Tsybakov (1997), Walther (1997), Cadre (2006)], the problem of support estimation has been also addressed via unsupervised learning methods, such as the one-class kernel Support Vector Machines algorithm presented in Schölkopf, Platt, Shawe-Taylor, Smola and Williamson (2001).

Among the various approaches that have been proposed to date to estimate S_{f}, the probably most simple and intuitive one has been considered in Devroye and Wise (1980). The estimator is defined as

$$
\begin{equation*}
\hat{S}_{n}=\bigcup_{i=1}^{n} \mathcal{B}\left(X_{i}, r_{n}\right) \tag{1.1}
\end{equation*}
$$

where $\mathcal{B}(x, r)$ denotes the closed Euclidean ball centered at x and of radius r, and where $\left(r_{n}\right)$ is an appropriately chosen sequence of positive smoothing parameters. Note that this approach amounts to estimate the support of the density by the support of a kernel estimate, the kernel of which has a ball-shaped support. The sequence $\left(r_{n}\right)$ then plays a role analogous to that of the kernel bandwidth. The practical properties of the support estimator (1.1) are explored in Baíllo, Cuevas and Justel (2000), who argue that this estimator is a good generalist when no a priori information is available on
S_{f}. Moreover, from a practical perspective, the relative simplicity of the naive strategy (1.1) arises as a major advantage in comparison with competing multidimensional set estimation techniques, that are faced with severe difficulties owing to a heavy computational burden.

To measure the performance of the support estimator, i.e., the closeness of \hat{S}_{n} to S_{f}, a standard choice is to use the distance $d_{1}\left(\hat{S}_{n}, S_{f}\right)$ defined by

$$
d_{1}\left(\hat{S}_{n}, S_{f}\right)=\lambda\left(\hat{S}_{n} \triangle S_{f}\right)
$$

where Δ denotes the symmetric difference and λ is the Lebesgue measure on \mathbb{R}^{d}. This criterion of proximity between sets, which is geometric by essence, has been successfully employed for example by Korostelev and Tsybakov (1993b), Härdle, Park and Tsybakov (1995), and Mammen and Tsybakov (1995) who have considered maximum-likelihood-type estimators and have derived minimax rates of convergence under various assumptions on the boundary sharpness of f, that is, the behavior of f near the boundary of the support S_{f}.

The distance d_{1} may be easily extended to the much more general measurebased distance d_{μ} defined by

$$
d_{\mu}\left(\hat{S}_{n}, S_{f}\right)=\mu\left(\hat{S}_{n} \triangle S_{f}\right)
$$

where μ is any measure on the Borel sets of \mathbb{R}^{d}. In this context, Cuevas and Fraiman (1997) discuss the d_{μ}-asymptotic properties of a plug-in estimator of S_{f} of the form $\left\{f_{n}>\alpha_{n}\right\}$, where f_{n} is a nonparametric density estimator of f, and where α_{n} is a tuning parameter converging to zero. These authors establish also asymptotic results in terms of the Hausdorff metric, which is another natural criterion of proximity between sets [Cuevas (1990), Korostelev and Tsybakov (1993b), Korostelev, Simar and Tsybakov (1995), Cuevas and Rodríguez-Casal (2004)].

Assuming for convenience that μ is absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^{d}, with a density g, the criterion d_{μ} may be written as

$$
\begin{equation*}
d_{g}\left(\hat{S}_{n}, S_{f}\right)=\int_{\mathbb{R}^{d}} \mathbf{1}_{\hat{S}_{n} \Delta S_{f}}(x) g(x) \mathrm{d} x . \tag{1.2}
\end{equation*}
$$

The proximity measure (1.2) is fairly general and encompasses several interesting cases of choices of g, depending on the problem at hand. For instance, set first $g \equiv f$, and denote by X a random variable with density f independent of the sample. This yields the criterion

$$
d_{f}\left(\hat{S}_{n}, S_{f}\right)=\mathbb{P}\left(X \notin \hat{S}_{n} \mid X_{1}, \ldots, X_{n}\right),
$$

which is a natural statistical measure of the accuracy of \hat{S}_{n} with respect to S_{f}. More generally, for a random variable X with density g independent of the sample, we may write

$$
\begin{equation*}
d_{g}\left(\hat{S}_{n}, S_{f}\right)=\mathbb{P}\left(X \in \hat{S}_{n} \triangle S_{f} \mid X_{1}, \ldots, X_{n}\right) \tag{1.3}
\end{equation*}
$$

This loss has been considered in Devroye and Wise (1980) in a concrete testing problem regarding the detection of the abnormal behavior of a system. Roughly, a machine is observed in normal operation through the sequence of independent observations X_{1}, \ldots, X_{n} drawn from the density f, and the complement S_{f}^{c} of S_{f} is considered as a danger area. Given a new and unique observation X_{n+1} with density g (possibly different from f), one has to decide whether or not the system behaves abnormally, in the sense that the distribution of X_{n+1} is different from f. A natural testing strategy then consists in rejecting the null hypothesis if X_{n+1} does not belong to \hat{S}_{n}. In this context, the distances d_{f} and d_{g} have clear interpretations in terms of error of the first kind (or false alarm probability) and of the second kind, respectively. Devroye and Wise (1980) have proved consistency of the estimator (1.1) with respect to the symmetric difference (1.3) under some conditions on the sequence $\left(r_{n}\right)$ which are analogous to those imposed on the bandwidth parameter in kernel estimation. The results of Devroye and Wise (1980) have been further explored by Baíllo, Cuevas and Justel (2000), who focused more particularly on the false alarm probability and suggested data-driven strategies to select the smoothing parameter r_{n}.

To the best of our knowledge, no exact rates of convergence of the density support estimator (1.1) are available in the literature. In the present paper, we propose to fill this gap, using the general distance d_{g} defined in (1.2) as a criterion of accuracy. Our main result (Theorem 3.1) states, under some mild analytic conditions on f and g, that there exists an explicit non-negative constant c such that

$$
\sqrt{n r_{n}^{d}} \mathbb{E} d_{g}\left(\hat{S}_{n}, S_{f}\right) \rightarrow c \quad \text { as } n \rightarrow \infty
$$

provided $n r_{n}^{d} \rightarrow \infty$ and $n r_{n}^{d+2} \rightarrow 0$. As a matter of fact, we will prove that much faster rates are achievable-including exponential ones-, depending on the relative positions and geometric characteristics of the respective supports of f and g. Moreover, we will show that the requirement $n r_{n}^{d+2} \rightarrow 0$ is sharp, in the sense that the condition $n r_{n}^{d+2} \rightarrow \infty$ implies $\sqrt{n r_{n}^{d}} \mathbb{E} d_{1}\left(\hat{S}_{n}, S_{f}\right) \rightarrow \infty$ (Theorem 3.2). We insist on the fact that, throughout the paper, the density f is supposed to be continuous on \mathbb{R}^{d}. Thus, we are in the case of a nonsharp boundary, i.e., f decreases continuously to zero at the boundary of its
support.
The paper is organized as follows. Section 2 introduces notation that is used throughout. The main convergence results are exposed in Section 3 in the general setting, and next are specialized to two important sub-cases developed in Section 4. Technical lemmas necessary to the proofs of the theorems in Section 3 and Section 4 are postponed to the Appendix A. At last, the proofs of our results require integrating over a tubular neighborhood of the boundary of the support, and so a brief account to the main useful facts from differential geometry is provided by Appendix B [for further material, we refer to Gray (1990), Bredon (1993), Chavel (1993), and Kobayashi and Nomizu (1996)].

2 Notation

Let us start by introducing some general notation concerning an arbitrary smooth Riemannian submanifold (M, σ) of \mathbb{R}^{d}. The Riemannian metric σ on M is induced by the canonical embedding of M in \mathbb{R}^{d}. The Riemannian volume measure on (M, σ) will be denoted by v_{σ}. We shall denote by $T M^{\perp}$ the normal bundle of M, and the tubular neighborhood of M of radius ε will be denoted by $\mathcal{V}(M, \varepsilon)$.

Given a function h on \mathbb{R}^{d} taking values in \mathbb{R}_{+}and any subset A of \mathbb{R}_{+}, we use the notation

$$
[h \in A]=\left\{x \in \mathbb{R}^{d}: h(x) \in A\right\},
$$

and we let the support S_{h} of h be defined as

$$
S_{h}=\overline{[h>0]} .
$$

The interior and boundary of S_{h} will be denoted by $\stackrel{\circ}{S}_{h}$ and $\partial S_{h}=S_{h}-\stackrel{\circ}{S}_{h}$, respectively.

Wherever appropriate, we shall be led to consider the unit-norm section $\left\{e_{p}^{h}, p \in \partial S_{h}\right\}$ of $T \partial S_{h}^{\perp}$ that is pointing inwards, i.e., for all $p \in \partial S_{h}, e_{p}^{h}$ is the unit-norm normal vector to ∂S_{h} at p that is directed towards the interior of S_{h}. Further, whenever it exists, the $k^{\text {th }}$ directional derivative of h at the point $p+u e_{p}^{h}$ in the direction e_{p}^{h} will be denoted by $D_{e_{p}^{h}}^{k} h\left(p+u e_{p}^{h}\right)$, with the conventions $D_{e_{p}^{h}}^{0}=$ Id and $D_{e_{p}^{h}}^{1}=D_{e_{p}^{h}}$.

Denoting by g a real-valued function on \mathbb{R}^{d} with support S_{g} (not necessarily compact), we recall that the paper is devoted to the study of the asymptotic behavior of $d_{g}\left(\hat{S}_{n}, S_{f}\right)$, with

$$
d_{g}\left(\hat{S}_{n}, S_{f}\right)=\int_{\mathbb{R}^{d}} \mathbf{1}_{\hat{S}_{n} \Delta S_{f}}(x) g(x) \mathrm{d} x .
$$

The following basic assumptions on f and g will be supposed satisfied throughout the paper:

Basic Assumptions

(a) The support S_{f} of f is compact, and f is of class \mathcal{C}^{2} on $\stackrel{\circ}{S}_{f}$;
(b) g is a positive, bounded, and continuous function on \mathbb{R}^{d};
(c) $S_{f} \cap S_{g} \neq \emptyset$.

The case where $S_{f} \cap S_{g}=\emptyset$ is excluded from the study since, for n large enough, we then have $d_{g}\left(\hat{S}_{n}, S_{f}\right)=0$ with probability 1 . The present study is also limited to the case of a density f of class \mathcal{C}^{2} for the sake of simplicity. In fact, cases where f exhibits a higher regularity may also be addressed by having recourse to the same flow of arguments as those exposed in the paper, but at the expense of heavier technical developments.
Finally, we will let λ_{g} be the measure on \mathbb{R}^{d} defined by

$$
\lambda_{g}(A)=\int_{A} g \mathrm{~d} \lambda
$$

for any Borel set $A \subset \mathbb{R}^{d}$. At last, the letter C will denote a positive constant, the value of which may vary from line to line.

3 The general case

3.1 Convergence

We will make the following assumption on f :

Assumption 1

(a) The boundary ∂S_{f} of S_{f} is a smooth submanifold of \mathbb{R}^{d} of codimension 1 ;
(b) The set $[f>0]$ is connected;
(c) $f>0$ on $\stackrel{\circ}{S}_{f}$.

Note that Assumption 1 never holds when the dimension d equals 1. However, all the results stated herein are still valid in dimension one, in a sense made precise in the remark below.

Remark 3.1 In dimension one, the set S_{f} is a closed interval with boundary points $a<b$. In this case, all the results of the paper, which involve integrations on ∂S_{f} with respect to the volume measure v_{σ}, still hold when v_{σ} is replaced by the counting measure on $\{a\} \cup\{b\}$, so that the integral may be expressed as a sum.

Remark 3.2 First, Assumption 1-(b) on the connectedness of $[f>0]$ may be relaxed to the assumption that the boundaries of the connected components of $[f>0]$ are submanifolds of codimension 1 which do not overlap; see the discussion in Remark 3.3 after Theorem 3.1.

Second, in the proofs of our results, we shall be led to consider sets of the form $[f \leq t]$, for some small positive t. In this respect, Assumption 1-(c) ensures that f does not vanish on the topological interior $\stackrel{\circ}{S}_{f}$ of S_{f}. Consequently under Assumption 1, the set $[f \leq t]$ is included in a tubular neighborhood of ∂S_{f} for t small enough, which allows for an identification of $[f \leq t]$ with a subset of the normal bundle of ∂S_{f}.

By Assumption 1-(a), $\left(\partial S_{f}, \sigma\right)$ is a smooth Riemannian submanifold of \mathbb{R}^{d}. Note also that $\left(\partial S_{f}, \sigma\right)$ is a closed (i.e., compact and without boundary) submanifold. Consequently, there exists a tubular neighborhood of ∂S_{f} of radius $\rho>0$ [see Appendix B], which implies the existence of an $\epsilon>0$ such that, for all $p \in \partial S_{f}$ and all $v \in[0, \varepsilon], p+v e_{p}^{f} \in S_{f}$.

As stated in the Basic Assumptions, the density f is of class \mathcal{C}^{2} on $\stackrel{\circ}{S}_{f}$. Indeed, it will be demonstrated next that the convergence rate of \hat{S}_{n} to S_{f} depends on the degree of smoothness of f on ∂S_{f}. For this reason, two cases are investigated herein:
(i) The case where f is of class \mathcal{C}^{0} on \mathbb{R}^{d} with positive first directional derivative $D_{e_{p}^{f}} f(p)$ for all p in ∂S_{f}, and
(ii) The case where f is of class \mathcal{C}^{1} on \mathbb{R}^{d} with positive second directional derivative $D_{e_{p}^{f}}^{2} f(p)$ for all p in ∂S_{f}.

Note that in the second case, the first directional derivative $D_{e_{p}^{f}} f(p)$ vanishes on the boundary by a continuity argument. The following assumptions, which depend on some parameter $k \in\{1,2\}$, summarize all the smoothness constraints required on f. Despite their technical aspect, these requirements are mild.

Assumption 2

(a) f is of class \mathcal{C}^{k-1} on \mathbb{R}^{d}.
(b) There exists $\varepsilon>0$ such that, for all $p \in \partial S_{f}$, the map $u \mapsto f\left(p+u e_{p}^{f}\right)$ is of class \mathcal{C}^{k} on $[0, \varepsilon]$.
(c) There exists $\varepsilon>0$ such that $\sup _{0 \leq u \leq \varepsilon} \sup _{p \in \partial S_{f}}\left|D_{e_{p}^{f}}^{k} f\left(p+u e_{p}^{f}\right)\right|<\infty$.
(d) $\sup _{\varepsilon>0} \sup _{x \in S_{f}: \operatorname{dist}\left(x, \partial S_{f}\right) \geq \varepsilon}\|\mathrm{H} f(x)\|<\infty$, where $\mathrm{H} f(x)$ denotes the hessian matrix of f at the point x.
(e) There exists $\varepsilon>0$ such that $\inf _{0 \leq u \leq \varepsilon} \inf _{p \in \partial S_{f}} D_{e_{p}^{f}}^{k} f\left(p+u e_{p}^{f}\right)>0$.

We are now in a position to state our main result.
Theorem 3.1 Suppose that Assumption 1 and Assumption 2 hold for some $k \in\{1,2\}$. Then, if $n r_{n}^{d} \rightarrow \infty$ and $n r_{n}^{d+k} \rightarrow 0$, we have, as $n \rightarrow \infty$,

$$
\left(n r_{n}^{d}\right)^{1 / k} \mathbb{E} d_{g}\left(\hat{S}_{n}, S_{f}\right) \rightarrow\left(\frac{\pi}{2}\right)^{(k-1) / 2} \omega_{d}^{-1 / k} \int_{\partial S_{f}} \frac{g(p)}{\left[D_{e_{p}^{f}}^{k} f(p)\right]^{1 / k}} \mathrm{~d} v_{\sigma}(p),
$$

where ω_{d} denotes the volume of the unit ball of \mathbb{R}^{d}.
For the related problem of estimating a density level set $[f>t]$ with $t>$ 0 , Cadre (2006) obtains exact rates of convergence by use of the co-area formula [Evans and Gariepy (1992)]. The limit constant turns out to be an integral over the boundary of the actual level set of the reciprocal of the norm of the gradient of f, with respect to the $(d-1)$-dimensional Hausdorff measure on \mathbb{R}^{d}. Note that the integral in Theorem 3.1 may also be expressed with respect to the $(d-1)$-dimensional Hausdorff measure. Actually, on a smooth submanifold M of \mathbb{R}^{d} of codimension 1 , the $(d-1)$-dimensional Hausdorff measure reduces to the Riemannian volume measure v_{σ} induced by the canonical injection $i: M \rightarrow \mathbb{R}^{d}$ [see e.g., Chavel (1993, p. 126)]. However, neither the proof nor the main result of Cadre (2006) apply in the present context.

Remark 3.3 If the set $[f>0]$ has a number $m \geq 2$ of connected components, all of whose satisfy Assumption 1, and if the boundaries of the connected components are mutually disjoint, then a result similar to that of Theorem 3.1 may be established. In such a case, the limit constant is expressed as the sum of m integrals on the boundaries of the connected components with respect to the induced Riemannian volume measure.

To illustrate the result of Theorem 3.1, consider for example the Epanechnikov probability density function defined for all x in the unit closed Euclidean ball $\mathcal{B}(0,1)$ by

$$
f(x)=c_{0}\left(1-\|x\|^{2}\right),
$$

and by 0 otherwise. Here, c_{0} is a normalizing constant set as

$$
c_{0}=\left[\omega_{d}-d \omega_{d-1} B\left(\frac{3}{2}, d\right)\right]^{-1},
$$

where $B(.,$.$) is the beta function, and \omega_{0}=1$ by definition. Clearly f is of class \mathcal{C}^{2} in the interior of S_{f}, and of class \mathcal{C}^{0} on \mathbb{R}^{d} since $D_{e_{p}^{f}} f(p)=2 c_{0}$ for all p in $\partial \mathcal{B}(0,1)$. For example, fix $g \equiv 1$, so that the loss reduces to the usual geometrical criterion $d_{1}\left(\hat{S}_{n}, S_{f}\right)=\lambda\left(\hat{S}_{n} \Delta S_{f}\right)$. In this context, Theorem 3.1 reads as

$$
n r_{n}^{d} \mathbb{E} \lambda\left(\hat{S}_{n} \Delta S_{f}\right) \rightarrow \frac{1}{2 c_{0} \omega_{d}} v_{\sigma}(\partial \mathcal{B}(0,1))=\frac{d}{2}\left[\omega_{d}-d \omega_{d-1} B\left(\frac{3}{2}, d\right)\right],
$$

since $v_{\sigma}(\partial \mathcal{B}(0,1))=d \omega_{d}$.
Proof The proofs for cases $k=1$ and $k=2$ are similar. For the sake of simplicity, we prove the result for the case $k=2$ only. In this context, the convergence occurs at speed $\sqrt{n r_{n}^{d}}$ under the conditions $n r_{n}^{d} \rightarrow \infty$ and $n r_{n}^{d+2} \rightarrow 0$. We start the proof by the equalities

$$
\begin{align*}
\mathbb{E} d_{g}\left(\hat{S}_{n}, S_{f}\right) & =\mathbb{E} \lambda_{g}\left(\hat{S}_{n} \Delta S_{f}\right) \\
& =\mathbb{E} \lambda_{g}\left(\hat{S}_{n} \cap S_{f}^{c}\right)+\mathbb{E} \lambda_{g}\left(\hat{S}_{n}^{c} \cap S_{f}\right) . \tag{3.1}
\end{align*}
$$

Consider now the set \tilde{S}_{n} defined as

$$
\tilde{S}_{n}=\left\{x \in \mathbb{R}^{d}: \operatorname{dist}\left(x, \partial S_{f}\right) \leq r_{n}\right\}
$$

Since $\hat{S}_{n} \cap S_{f}^{c} \subset \tilde{S}_{n} \cap S_{f}^{c}$ with probability 1, we have

$$
\begin{aligned}
\mathbb{E} \lambda_{g}\left(\hat{S}_{n} \cap S_{f}^{c}\right) & =\int_{S_{f}^{c}} \mathbb{P}\left(x \in \hat{S}_{n}\right) g(x) \mathrm{d} x \\
& =\int_{S_{f}^{c} \cap \tilde{S}_{n}} \mathbb{P}\left(x \in \hat{S}_{n}\right) g(x) \mathrm{d} x \\
& \leq \lambda\left(S_{f}^{c} \cap \tilde{S}_{n}\right) \sup _{\mathbb{R}^{d}} g .
\end{aligned}
$$

By the Tubular Neighborhood Theorem [cf. Appendix B], there exists a tubular neighborhood $\mathcal{V}\left(\partial S_{f}, \rho\right)$ of ∂S_{f} of radius $\rho>0$. Consequently, as long as $r_{n}<\rho$, which occurs for n larger than some integer n_{0}, we have $S_{f}^{c} \cap \tilde{S}_{n} \subset \mathcal{V}\left(\partial S_{f}, \rho\right)$. In this case, using (B.1), the volume of $S_{f}^{c} \cap \tilde{S}_{n}$ is bounded above by $\sup _{\mathcal{V}\left(\partial S_{f}, p\right)} \Theta(p, u) v_{\sigma}\left(\partial S_{f}\right) r_{n}$. Thus, we have just proved that there exists a constant $C>0$ such that

$$
\begin{equation*}
\mathbb{E} \lambda_{g}\left(\hat{S}_{n} \cap S_{f}^{c}\right) \leq C r_{n} \tag{3.2}
\end{equation*}
$$

Since $n r_{n}^{d+2} \rightarrow 0$, we conclude that

$$
\begin{equation*}
\sqrt{n r_{n}^{d}} \mathbb{E} \lambda_{g}\left(\hat{S}_{n} \cap S_{f}^{c}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{3.3}
\end{equation*}
$$

Let us now examine the second term in equality (3.1), namely $\mathbb{E} \lambda_{g}\left(\hat{S}_{n}^{c} \cap S_{f}\right)$. To this aim, we introduce the function ψ_{n}, defined for all $x \in S_{f}$ by

$$
\psi_{n}(x)=r_{n}^{d} \omega_{d} f(x)+r_{n}^{d+2} K_{n}(x),
$$

where K_{n} is a function defined in Lemma A. 1 satisfying

$$
\begin{equation*}
\sup _{n} \sup _{x \in S_{f}}\left|K_{n}(x)\right|<\infty \tag{3.4}
\end{equation*}
$$

We have

$$
\begin{aligned}
\mathbb{E} \lambda_{g}\left(\hat{S}_{n}^{c} \cap S_{f}\right) & =\int_{S_{f}} \mathbb{P}\left(x \notin \hat{S}_{n}\right) g(x) \mathrm{d} x \\
& =\int_{S_{f}}\left[1-\mathbb{P}\left(X \in \mathcal{B}\left(x, r_{n}\right)\right)\right]^{n} g(x) \mathrm{d} x \\
& =\int_{S_{f}}\left[1-\psi_{n}(x)\right]^{n} g(x) \mathrm{d} x,
\end{aligned}
$$

where the last equality follows from Lemma A.1. Denote by $\left(\varepsilon_{n}\right)$ a sequence of positive real numbers satisfying $\varepsilon_{n} \rightarrow 0$ and $\sqrt{n r_{n}^{d}} \varepsilon_{n} \rightarrow \infty$. Using the notation

$$
\begin{equation*}
I=\int_{S_{f} \cap\left[f \leq \varepsilon_{n}\right]}\left[1-\psi_{n}(x)\right]^{n} g(x) \mathrm{d} x \tag{3.5}
\end{equation*}
$$

we obtain

$$
\begin{aligned}
\left|\mathbb{E} \lambda_{g}\left(\hat{S}_{n}^{c} \cap S_{f}\right)-I\right| & =\int_{\left[f>\varepsilon_{n}\right]}\left[1-\psi_{n}(x)\right]^{n} g(x) \mathrm{d} x \\
& \leq \int_{\left[f>\varepsilon_{n}\right]} \exp \left[-n \psi_{n}(x)\right] g(x) \mathrm{d} x
\end{aligned}
$$

where, in the last inequality, we have used the fact that $1-t \leq \exp (-t)$ for $t \in \mathbb{R}$. This leads, using the definition of $\psi_{n}(x)$ and (3.4), to

$$
\begin{align*}
\left|\mathbb{E} \lambda_{g}\left(\hat{S}_{n}^{c} \cap S_{f}\right)-I\right| & \leq \exp \left(-n r_{n}^{d} \varepsilon_{n} \omega_{d}\right) \int_{\left[f>\varepsilon_{n}\right]} \exp \left(n r_{n}^{d+2}\left|K_{n}(x)\right|\right) g(x) \mathrm{d} x \\
& \leq C \exp \left(-n r_{n}^{d} \varepsilon_{n} \omega_{d}\right) \tag{3.6}
\end{align*}
$$

since $n r_{n}^{d+2} \rightarrow 0$ as $n \rightarrow \infty$. Consequently, for n large enough,

$$
\begin{align*}
\sqrt{n r_{n}^{d}}\left|\mathbb{E} \lambda_{g}\left(\hat{S}_{n}^{c} \cap S_{f}\right)-I\right| & \leq C \sqrt{n r_{n}^{d}} \exp \left(-n r_{n}^{d} \varepsilon_{n} \omega_{d}\right) \\
& \leq C \sqrt{n r_{n}^{d}} \exp \left(-\sqrt{n r_{n}^{d}}\right) \tag{3.7}
\end{align*}
$$

and this latter term tends to 0 since $n r_{n}^{d} \rightarrow \infty$. Therefore, we only need to deal with the asymptotic behavior of the term I.

Let $\mathcal{V}\left(\partial S_{f}, \rho\right)$ be a tubular neighborhood of ∂S_{f} of radius $\rho>0$, the existence of which follows from the Tubular Neighborhood Theorem under Assumption 1.a. From Assumption 1.b, it follows that the set $\left[f \leq \varepsilon_{n}\right]$ is included in $\mathcal{V}\left(\partial S_{f}, \rho\right)$ for all n large enough. From now on, it is assumed in the remainder of the proof that n is large enough for this inclusion to hold. Next, since n is large enough, for all $p \in \partial S_{f}$, we define, as in (A.4), $\kappa_{p}^{f}\left(\varepsilon_{n}\right)$ as the distance between p and the points x of $\left[f=\varepsilon_{n}\right]$ such that the vector $x-p$ is orthogonal to ∂S_{f}. To simplify the notation, we write $\kappa_{p}(\varepsilon)$ instead of $\kappa_{p}^{f}(\varepsilon)$, and e_{p} for the normal vector field instead of e_{p}^{f}. From the identity (B.1), and since n is larger enough, it follows that the integral I may be expressed as

$$
\begin{equation*}
I=\int_{\partial S_{f}} I(p) \mathrm{d} v_{\sigma}(p) \tag{3.8}
\end{equation*}
$$

where, for all $p \in \partial S_{f}$, the term $I(p)$ is defined as

$$
\begin{gather*}
I(p)=\int_{0}^{\kappa_{p}\left(\varepsilon_{n}\right)}\left[1-\psi_{n}\left(p+v e_{p}\right)\right]^{n} g\left(p+v e_{p}\right) \Theta(p, v) \mathrm{d} v \\
=\frac{1}{\sqrt{n r_{n}^{d}}} \int_{0}^{\sqrt{n r_{n}^{d}} \kappa_{p}\left(\varepsilon_{n}\right)} \quad \exp \left[n \log \left(1-\psi_{n}\left(p+\frac{u}{\sqrt{n r_{n}^{d}}} e_{p}\right)\right)\right] \\
\quad \times g\left(p+\frac{u}{\sqrt{n r_{n}^{d}}} e_{p}\right) \Theta\left(p, \frac{u}{\sqrt{n r_{n}^{d}}}\right) \mathrm{d} u . \tag{3.9}
\end{gather*}
$$

According to Lemma A.2, for n large enough, $\sup _{p \in \partial S_{f}} \kappa_{p}\left(\varepsilon_{n}\right) \leq \rho$. Applying Lemma A.3, we obtain

$$
\begin{align*}
& I(p) \\
& \begin{aligned}
&=\frac{1}{\sqrt{n r_{n}^{d}}} \int_{0}^{\sqrt{n r_{n}^{d}} \kappa_{p}\left(\varepsilon_{n}\right)} \exp \left[-\frac{u^{2} \omega_{d}}{2} D_{e_{p}}^{2} f\left(p+\xi e_{p}\right)-\frac{u^{4} \omega_{d}^{2}}{8 n}\left(D_{e_{p}}^{2} f\left(p+\xi e_{p}\right)\right)^{2}\right. \\
&\left.\quad n r_{n}^{d+2} R_{n}(p, u)\right] g\left(p+\frac{u}{\sqrt{n r_{n}^{d}}} e_{p}\right) \Theta\left(p, \frac{u}{\sqrt{n r_{n}^{d}}}\right) \mathrm{d} u
\end{aligned}
\end{align*}
$$

where

$$
\xi=\xi(n, p, u) \in\left(0, \kappa_{p}\left(\varepsilon_{n}\right)\right),
$$

and $R_{n}(p, u)$ satisfies

$$
\sup _{n} \sup _{p \in \partial S_{f}} \sup _{0 \leq u \leq \sqrt{n r r_{n}^{d}} \kappa_{p}\left(\varepsilon_{n}\right)}\left|R_{n}(p, u)\right|<\infty .
$$

Using the fact that, for each $p \in \partial S_{f}, 0 \leq \xi \leq \kappa_{p}\left(\varepsilon_{n}\right)$ and $\sup _{p \in \partial S_{f}} \kappa_{p}\left(\varepsilon_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ [by Lemma A.2], we are sure that, for n large enough, all points $p+\xi e_{p}$ fall in $\mathcal{V}\left(\partial S_{f}, \rho\right)$. Consequently, by Assumption 2.e, there exists some $\alpha>0$ independent of n such that, for n large enough,

$$
\begin{equation*}
\inf _{p \in \partial S_{f}} D_{e_{p}}^{2} f\left(p+\xi e_{p}\right) \geq \alpha \tag{3.11}
\end{equation*}
$$

Thus, the Lebesgue dominated convergence Theorem may be applied to the integral in (3.10). Since, by Lemma A.2, $\sqrt{n r_{n}^{d}} \kappa_{p}\left(\varepsilon_{n}\right) \rightarrow \infty$, since g is continuous, and since Θ is \mathcal{C}^{∞} with $\Theta(p, 0)=1 \forall p \in \partial S_{f}$, we obtain, for each $p \in \partial S_{f}$,

$$
\sqrt{n r_{n}^{d}} I(p) \rightarrow \int_{0}^{+\infty} \exp \left[-\frac{u^{2} \omega_{d}}{2} D_{e_{p}}^{2} f(p)\right] g(p) \mathrm{d} u \quad \text { as } n \rightarrow \infty
$$

The limit above is equal to

$$
\sqrt{\frac{\pi}{2 \omega_{d}}} \frac{g(p)}{\sqrt{D_{e_{p}}^{2} f(p)}}
$$

Using once again inequality (3.11) yields to

$$
\sup _{n} \sup _{p \in \partial S_{f}} \sqrt{n r_{n}^{d}} I(p)<\infty .
$$

As ∂S_{f} is compact, it has finite volume, i.e., $v_{\sigma}\left(\partial S_{f}\right)<\infty$, and we conclude by the Lebesgue Theorem that

$$
\sqrt{n r_{n}^{d}} I=\int_{\partial S_{f}} \sqrt{n r_{n}^{d}} I(p) \mathrm{d} v_{\sigma}(p) \rightarrow \int_{\partial S_{f}} \sqrt{\frac{\pi}{2 \omega_{d}}} \frac{g(p)}{\sqrt{D_{e_{p}}^{2} f(p)}} \mathrm{d} v_{\sigma}(p) \quad \text { as } n \rightarrow \infty
$$

Putting together (3.3), (3.7) and the limit above leads to the desired result.

3.2 Necessary condition on the radius

Theorem 3.2 Suppose that S_{f} is the closed unit Euclidean ball of \mathbb{R}^{d}, and that Assumption 2 holds for some $k \in\{1,2\}$. Then, if $n r_{n}^{d+k} \rightarrow \infty$, as $n \rightarrow \infty$,

$$
\left(n r_{n}^{d}\right)^{1 / k} \mathbb{E} d_{1}\left(\hat{S}_{n}, S_{f}\right) \rightarrow \infty
$$

Theorem 3.2 shows that the assumption $n r_{n}^{d+k} \rightarrow 0$ of Theorem 3.1 is sharp. If we restrict ourselves to choices of radius $r_{n}=\mathrm{O}\left(n^{-s}\right)$ for some $s>0$, then the condition of Theorem 3.1 becomes $1 /(d+k)<s<1 / d$. In this context, the best convergence rate, which corresponds to values of s close to $1 /(d+k)$, must be slower than $\mathrm{O}\left(n^{1 /(d+k)}\right)$.

Proof According to decomposition (3.1), it suffices to prove that

$$
\left(n r_{n}^{d}\right)^{1 / k} \mathbb{E} \lambda\left(\hat{S}_{n} \cap S_{f}^{c}\right) \rightarrow \infty
$$

For simplicity, for all $p \in \partial S_{f}$, we write e_{p} instead of e_{p}^{f}. Denote by S^{d-1} the unit sphere in \mathbb{R}^{d}. Clearly, by (B.1),

$$
\begin{aligned}
\mathbb{E} \lambda\left(\hat{S}_{n} \cap S_{f}^{c}\right) & =\int_{S_{f}^{c}} \mathbb{P}\left(x \in \hat{S}_{n}\right) \mathrm{d} x \\
& =\int_{S^{d-1}} \int_{-r_{n}}^{0}\left[1-\left(1-p_{n}\left(p+u e_{p}\right)\right)^{n}\right] \Theta(p, u) \mathrm{d} u \mathrm{~d} v_{\sigma}(p),
\end{aligned}
$$

where

$$
p_{n}\left(p+u e_{p}\right)=\mathbb{P}\left(\operatorname{dist}\left(p+u e_{p}, X\right) \leq r_{n}\right)
$$

and where X is a random variable with density f. Taking the inner integral from $-r_{n} / 2$ yields the lower bound

$$
\mathbb{E} \lambda\left(\hat{S}_{n} \cap S_{f}^{c}\right) \geq \int_{S^{d-1}} \int_{-r_{n} / 2}^{0}\left[1-\left(1-p_{n}\left(p+u e_{p}\right)\right)^{n}\right] \Theta(p, u) \mathrm{d} u \mathrm{~d} v_{\sigma}(p)
$$

Clearly, for each fixed $p \in S^{d-1}$, the map $\left[-r_{n} / 2,0\right] \ni u \mapsto p_{n}\left(p+u e_{p}\right)$ is increasing. Thus, for each $u \in\left[-r_{n} / 2,0\right]$ and each $p \in S^{d-1}$, the quantity $p_{n}\left(p+u e_{p}\right)$ is bounded from below by $p_{n}\left(p-\left(r_{n} / 2\right) e_{p}\right)$, which in turn is bounded from below, and uniformly in p, by a sequence p_{n} such that $p_{n} \geq$ $C r_{n}^{d+k}$ for some constant $C>0$ by Lemma A.5. Consequently,

$$
\begin{aligned}
\mathbb{E} \lambda\left(\hat{S}_{n} \cap S_{f}^{c}\right) & \geq C v_{\sigma}\left(S^{d-1}\right) \frac{r_{n}}{2}\left[1-\exp \left(n \log \left(1-p_{n}\right)\right)\right] \\
& =\frac{C}{2} v_{\sigma}\left(S^{d-1}\right) r_{n}\left[1-\exp \left(-n p_{n} \frac{\log \left(1-p_{n}\right)}{-p_{n}}\right)\right]
\end{aligned}
$$

and so, for n large enough,

$$
\left[1-\exp \left(-n p_{n} \frac{\log \left(1-p_{n}\right)}{-p_{n}}\right)\right] \geq \frac{1}{2}
$$

since $n r_{n}^{d+k} \rightarrow \infty$ by assumption. Hence, for large n,

$$
\mathbb{E} \lambda\left(\hat{S}_{n} \cap S_{f}^{c}\right) \geq \frac{C}{4} v_{\sigma}\left(S^{d-1}\right) r_{n}
$$

and thus

$$
\left(n r_{n}^{d}\right)^{1 / k} \mathbb{E} \lambda\left(\hat{S}_{n} \cap S_{f}^{c}\right) \geq \frac{C}{4} v_{\sigma}\left(S^{d-1}\right)\left(n r_{n}^{d+k}\right)^{1 / k}
$$

from which the result follows.

4 The case $S_{g} \subset S_{f}$

An inspection of the limit term in Theorem 3.1 reveals that

$$
\left(n r_{n}^{d}\right)^{1 / k} \mathbb{E} d_{g}\left(\hat{S}_{n}, S_{f}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty,
$$

as soon as $\partial S_{f} \subset\left(\stackrel{\circ}{S}_{g}\right)^{c}$. In this case, the rate $\left(n r_{n}^{d}\right)^{1 / k}$ is therefore suboptimal, and this section aims at investigating the true convergence rate. For the same reason that the case $S_{f} \cap S_{g}=\emptyset$ was excluded, the requirement $\partial S_{f} \subset\left(\stackrel{\circ}{S}_{g}\right)^{c}$ means that we can assume that $S_{g} \subset S_{f}$. Thus, from now on, this latter condition will be supposed fulfilled. At this stage, two sub-cases, leading to different limit theorems, have to be considered:
(i) The case $\partial S_{f} \cap \partial S_{g} \neq \emptyset$, and
(ii) The case $\partial S_{f} \cap \partial S_{g}=\emptyset$.

From a statistical perspective, the sub-case (i), which allows for $g \equiv f$, is the most important. Indeed, recall that if X denotes a random variable with density f independent of the sample, the choice $g \equiv f$ yields the criterion

$$
\mathbb{E} d_{f}\left(\hat{S}_{n}, S_{f}\right)=\mathbb{P}\left(X \notin \hat{S}_{n}\right)
$$

However, for the sake of completeness, we will also discuss in detail the subcase (ii).

4.1 The sub-case $\partial S_{f} \cap \partial S_{g} \neq \emptyset$

We first introduce some smoothness assumptions on g, depending on a parameter $k \in\{1,2\}$.

Assumption 3

(a) There exists $\varepsilon>0$ such that, for all $p \in \partial S_{f}$, the map $u \mapsto g\left(p+u e_{p}^{f}\right)$ is of class \mathcal{C}^{k} on $[0, \varepsilon]$.
(b) There exists $\varepsilon>0$ such that $\sup _{0 \leq u \leq \varepsilon} \sup _{p \in \partial S_{f}}\left|D_{e_{p}^{f}}^{k} g\left(p+u e_{p}^{f}\right)\right|<\infty$.

As explained in Remark 3.2 and Remark 3.3, Assumption 1 may be relaxed.
Theorem 4.1 Suppose that $\partial S_{f} \cap \partial S_{g} \neq \emptyset$, and that Assumption 1, Assumption 2, and Assumption 3 hold for some $k \in\{1,2\}$. Moreover, suppose that, for all $p \in \partial S_{f}, D_{e_{p}^{f}}^{k-1} g(p)=0$. Then, if $n r_{n}^{d} \rightarrow \infty$ and $n r_{n}^{d+k /(k+1)} \rightarrow 0$, we have, as $n \rightarrow \infty$,

$$
\left(n r_{n}^{d}\right)^{(k+1) / k} \mathbb{E} d_{g}\left(\hat{S}_{n}, S_{f}\right) \rightarrow\left(\sqrt{\frac{\pi}{8}}\right)^{k-1} \omega_{d}^{-(k+1) / k} \int_{\partial S_{f}} \frac{D_{e_{p}^{f}}^{k} g(p)}{\left[D_{e_{p}^{k}}^{k} f(p)\right]^{(k+1) / k}} \mathrm{~d} v_{\sigma}(p)
$$

Set $g \equiv f$ and denote by X a random variable with density f independent of the sample. In this case, Theorem 4.1, applied for example with $k=1$, yields the following simple result

$$
\begin{equation*}
\left(n r_{n}^{d}\right)^{2} \mathbb{P}\left(X \notin \hat{S}_{n}\right) \rightarrow \omega_{d}^{-2} \int_{\partial S_{f}}\left[D_{e_{p}^{f}} f(p)\right]^{-1} \mathrm{~d} v_{\sigma}(p) \tag{4.1}
\end{equation*}
$$

We emphasize that the consistency result (4.1) has interesting statistical consequences regarding the detection problem stated in the Introduction. Indeed, it allows for a control of the asymptotic behavior of the false alarm probability. For example, to guarantee a false alarm level $\alpha \in(0,1)$ given
beforehand, with a radius $r_{n} \approx 1 / n^{1 /(d+1 / 2)}$ (up to a logarithmic factor), the number of observations should approximately satisfy

$$
n \approx\left(\frac{1}{\alpha \omega_{d}^{2}} \int_{\partial S_{f}}\left[D_{e_{p}^{f}} f(p)\right]^{-1} \mathrm{~d} v_{\sigma}(p)\right)^{d+1 / 2}
$$

Theorem 4.1 may be obtained by recursing to arguments similar to the ones advanced in the proof of Theorem 3.1. For this reason, we only sketch the proof.

Sketch of proof According to (3.1) and (3.2), one only needs to prove that

$$
\left(n r_{n}^{d}\right)^{(k+1) / k} \mathbb{E} \lambda_{g}\left(\hat{S}_{n}^{c} \cap S_{f}\right) \rightarrow\left(\sqrt{\frac{\pi}{8}}\right)^{k-1} \omega_{d}^{-(k+1) / k} \int_{\partial S_{f}} \frac{D_{e_{p}^{f}}^{k} g(p)}{\left[D_{e_{p}^{f}}^{k} f(p)\right]^{(k+1) / k}} \mathrm{~d} v_{\sigma}(p) .
$$

Denote by $\left(\varepsilon_{n}\right)$ a sequence of positive real numbers satisfying $\varepsilon_{n} \rightarrow 0$ and $\left(n r_{n}^{d}\right)^{1 / k} \varepsilon_{n} \rightarrow \infty$. For such an ε_{n}, let I be defined as in (3.5) for n large enough. Since $n r_{n}^{d+k /(k+1)} \rightarrow 0$, inequality (3.6) remains true. Therefore, we only need to deal with the asymptotic behavior of the term I. Following (3.8), I may be written as

$$
I=\int_{\partial S_{f}} I(p) \mathrm{d} v_{\sigma}(p)
$$

where $I(p)$ is defined by (3.9). For the sake of simplicity, we now consider the case $k=2$ as in the proof of Theorem 3.1. Then, representation (3.10) of $I(p)$ also holds in this context for n large enough. Since $g(p)=D_{e_{p}} g(p)=0$ for all $p \in \partial S_{f}$, we deduce from Assumption 3 and an expansion of g that for all $p \in \partial S_{f}$:
$I(p)$

$$
\begin{gathered}
=\frac{1}{\sqrt{n r_{n}^{d}}} \int_{0}^{\sqrt{n r_{n}^{d}} \kappa_{p}\left(\varepsilon_{n}\right)} \exp \left[-\frac{u^{2} \omega_{d}}{2} D_{e_{p}}^{2} f\left(p+\xi e_{p}\right)-\frac{u^{4} \omega_{d}^{2}}{8 n}\left(D_{e_{p}}^{2} f\left(p+\xi e_{p}\right)\right)^{2}\right. \\
\left.+n r_{n}^{d+2} R_{n}(p, u)\right] \frac{u^{2}}{2 n r_{n}^{d}} D_{e_{p}}^{2} g\left(p+\chi e_{p}\right) \Theta\left(p, \frac{u}{\sqrt{n r_{n}^{d}}}\right) \mathrm{d} u
\end{gathered}
$$

where

$$
\xi=\xi(n, p, u) \in\left(0, \kappa_{p}\left(\varepsilon_{n}\right)\right), \quad \chi=\chi(n, p, u) \in\left(0, \kappa_{p}\left(\varepsilon_{n}\right)\right),
$$

and $R_{n}(p, u)$ satisfies

$$
\sup _{n} \sup _{p \in \partial S_{f}} \sup _{0 \leq u \leq \sqrt{n r_{n}^{d} \kappa_{p}\left(\varepsilon_{n}\right)}}\left|R_{n}(p, u)\right|<\infty .
$$

Using similar arguments as in the end of proof of Theorem 3.1, we obtain for all $p \in \partial S_{f}$:

$$
\left(n r_{n}^{d}\right)^{3 / 2} I(p) \rightarrow \frac{1}{2} D_{e_{p}}^{2} g(p) \int_{0}^{\infty} u^{2} \exp \left[-\frac{u^{2} \omega_{d}}{2} D_{e_{p}}^{2} f(p)\right] \mathrm{d} u .
$$

The limit above is equal to

$$
\sqrt{\frac{\pi}{8}} \omega_{d}^{-3 / 2} \frac{D_{e_{p}}^{2} g(p)}{\left[D_{e_{p}}^{2} f(p)\right]^{3 / 2}}
$$

We then conclude as in the proof of Theorem 3.1.

4.2 The sub-case $\partial S_{f} \cap \partial S_{g}=\emptyset$

We introduce the function \bar{f} defined on S_{g} by

$$
\bar{f}(x)=f(x)-\inf _{S_{g}} f, \quad x \in S_{g}
$$

The support $S_{\bar{f}}$ of \bar{f} is itself compact. Moreover,

$$
\partial S_{\bar{f}}=\left\{x \in S_{g}: f(x)=\inf _{S_{g}} f\right\}=\arg \min _{S_{g}} f_{\mid S_{g}} .
$$

We will need the following assumptions on f.

Assumption 4

(a) The boundary $\partial S_{\bar{f}}$ of $S_{\bar{f}}$ is a smooth submanifold of \mathbb{R}^{d} of codimension 1 ;
(b) The set $[\bar{f}>0]$ is connected;
(c) $\bar{f}>0$ on $\stackrel{\circ}{S}_{g}$.

Assumption 5 There exists $\varepsilon>0$ such that $\inf _{0 \leq u \leq \varepsilon} \inf _{p \in \partial S_{\bar{f}}} D_{e_{p}^{\bar{f}}} f(p+$ $\left.u e_{p}^{\bar{f}}\right)>0$.

By analogy with Assumption 1, Assumption 4 does not hold when the dimension d equals one, but the result remains valid in the sense exposed in Remark 3.1 with \bar{f} in place of f. Furthermore, the simple connectedness assumption of $[\bar{f}>0]$ may be relaxed as explained in Remark 3.2 and Remark 3.3. Basically, Assumption 5 means that f has no flat part on the boundary of $S_{\bar{f}}$.

Theorem 4.2 Suppose that $\partial S_{f} \cap \partial S_{g}=\emptyset$, and that Assumption 4 and Assumption 5 hold. Then, if $n r_{n}^{d} \rightarrow \infty, n r_{n}^{d+2} \rightarrow 0$, and $n r_{n}^{2 d} \rightarrow 0$, we have, as $n \rightarrow \infty$,

$$
n r_{n}^{d} \exp \left(n r_{n}^{d} \omega_{d} \inf _{S_{g}} f\right) \mathbb{E} d_{g}\left(\hat{S}_{n}, S_{f}\right) \rightarrow \omega_{d}^{-1} \int_{\partial S_{\bar{f}}} \frac{g(p)}{D_{e_{p}^{\bar{f}}} f(p)} \mathrm{d} v_{\sigma}(p)
$$

Observe that the limit vanishes when $S_{\bar{f}}=S_{g}$ since, in such a case, we have $g(p)=0$ for all $p \in \partial S_{\bar{f}}$. In this context, for a sufficiently smooth g, it is straightforward to improve the result and to obtain the exact rate of convergence, which just differs from above by a power of $n r_{n}^{d}$. We leave the details to the reader.

Note that if Assumption 4 proves useful for establishing Theorem 4.2, it does not allow for those situations where, in dimension 2, the set $\partial S_{\bar{f}}=$ $\arg \min _{S_{g}} f_{\mid S_{g}}$ is finite. However, when this occurs, it is still possible to derive an exponential rate of convergence. For example, suppose that f has no flat part on $\bar{f}^{-1}([0, \varepsilon])$, for some $\varepsilon>0$. Then one can deduce from the coarea Formula [see Evans and Gariepy (1992)], from some of the arguments used in the proof of Theorem 4.2, and under the same conditions on the radius, that

$$
\limsup _{n} n r_{n}^{d} \exp \left(n r_{n}^{d} \omega_{d} \inf _{S_{g}} f\right) \mathbb{E} d_{g}\left(\hat{S}_{n}, S_{f}\right) \leq C \mathcal{H}\left(\partial S_{\bar{f}}\right)
$$

for some $C>0$. Here, \mathcal{H} stands for the $(d-1)$-dimensional Hausdorff measure on \mathbb{R}^{d}. When $\mathcal{H}\left(\partial S_{\bar{f}}\right)=0$, a situation which occurs for instance when $d \geq 2$ and $\partial S_{\bar{f}}$ is finite, the result reads

$$
n r_{n}^{d} \exp \left(n r_{n}^{d} \omega_{d} \inf _{S_{g}} f\right) \mathbb{E} d_{g}\left(\hat{S}_{n}, S_{f}\right) \rightarrow 0
$$

Proof We have

$$
\begin{aligned}
\mathbb{E} d_{g}\left(\hat{S}_{n}, S_{f}\right)= & \mathbb{E} \lambda_{g}\left(\hat{S}_{n} \Delta S_{f}\right) \\
= & \mathbb{E} \lambda_{g}\left(\hat{S}_{n}^{c} \cap S_{f}\right) \\
& \left(\text { since } S_{g} \subset S_{f}\right) \\
= & \int_{S_{g}} \mathbb{P}\left(x \notin \hat{S}_{n}\right) g(x) \mathrm{d} x \\
= & \int_{S_{g}}\left[1-\mathbb{P}\left(X \in \mathcal{B}\left(x, r_{n}\right)\right)\right]^{n} g(x) \mathrm{d} x .
\end{aligned}
$$

According to Lemma A.6, for all $x \in S_{g}$,

$$
\varphi_{n}(x)=\mathbb{P}\left(X \in \mathcal{B}\left(x, r_{n}\right)\right)=r_{n}^{d} \omega_{d} f(x)+r_{n}^{d+2} J_{n}(x),
$$

where the quantity $J_{n}(x)$ satisfies $\sup _{n} \sup _{x \in S_{g}}\left|J_{n}(x)\right|<\infty$. Now, let $\left(\varepsilon_{n}\right)$ be a sequence of positive real numbers satisfying $\varepsilon_{n} \rightarrow 0, \sqrt{n r_{n}^{d}} \varepsilon_{n} \rightarrow \infty$, and denote by I the integral

$$
I=\int_{\left[\bar{f} \leq \varepsilon_{n}\right]}\left[1-\varphi_{n}(x)\right]^{n} g(x) \mathrm{d} x
$$

Recalling that \bar{f} is only defined on S_{g}, we obtain

$$
\begin{aligned}
\left|\mathbb{E} d_{g}\left(\hat{S}_{n}, S_{f}\right)-I\right|= & \int_{\left[\bar{f}>\varepsilon_{n}\right]}\left[1-\varphi_{n}(x)\right]^{n} g(x) \mathrm{d} x \\
\leq & \int_{\left[\bar{f}>\varepsilon_{n}\right]} \exp \left[-n \varphi_{n}(x)\right] g(x) \mathrm{d} x \\
& (\text { since } 1-t \leq \exp (-t) \text { for } t \in \mathbb{R}), \\
\leq & v_{n}^{-1} \exp \left(-n r_{n}^{d} \omega_{d} \varepsilon_{n}\right) \int_{\left[\bar{f}>\varepsilon_{n}\right]} \exp \left(n r_{n}^{d+2}\left|J_{n}(x)\right|\right) g(x) \mathrm{d} x,
\end{aligned}
$$

where

$$
v_{n}=\exp \left(n r_{n}^{d} \omega_{d} \inf _{S_{g}} f\right)
$$

Since $n r_{n}^{d+2} \rightarrow 0$, since $\sup _{n} \sup _{x \in S_{g}}\left|J_{n}(x)\right|<\infty$, and since g is bounded, we obtain

$$
\begin{align*}
v_{n}\left|\mathbb{E} d_{g}\left(\hat{S}_{n}, S_{f}\right)-I\right| & \leq C \exp \left(-n r_{n}^{d} \omega_{d} \varepsilon_{n}\right) \\
& \leq C \exp \left(-\sqrt{n r_{n}^{d}}\right) \tag{4.2}
\end{align*}
$$

because $\sqrt{n r_{n}^{d}} \varepsilon_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Therefore, as $n r_{n}^{d} \exp \left(-\sqrt{n r_{n}^{d}}\right) \rightarrow 0$, we only need to focus on the term I.

As in the proof of Theorem 3.1, for n large enough, the set $\left[\bar{f} \leq \varepsilon_{n}\right]$ is contained in a tubular neighborhood of $\partial S_{\bar{f}}$. In this case, any $x \in\left[\bar{f} \leq \varepsilon_{n}\right]$ may be expressed in the form $p+u e_{p}^{\bar{f}}$, where $p \in \partial S_{\bar{f}}$. For ease of notation, we will write, for $p \in \partial S_{\bar{f}}, e_{p}$ instead of $e_{p}^{\bar{f}}$ and, for $\varepsilon>0, \kappa_{p}(\varepsilon)$ instead of $\kappa_{p}^{\bar{f}}(\varepsilon)$ [recall the definition of $\kappa_{p}^{\bar{f}}(\varepsilon)$ in (A.4)].

According to Assumption 4 and identity (B.1), we have

$$
\begin{equation*}
I=\int_{\partial S_{\bar{f}}} I(p) \mathrm{d} v_{\sigma}(p) \tag{4.3}
\end{equation*}
$$

where, for all $p \in \partial S_{\bar{f}}$,

$$
I(p)=\int_{0}^{\kappa_{p}\left(\varepsilon_{n}\right)}\left[1-\varphi_{n}\left(p+v e_{p}\right)\right]^{n} g\left(p+v e_{p}\right) \Theta(p, v) \mathrm{d} v .
$$

Using a change of variable leads to the equality
$I(p)=\frac{1}{n r_{n}^{d}} \int_{0}^{n r_{n}^{d} \kappa_{p}\left(\varepsilon_{n}\right)} \exp \left[n \log \left(1-\varphi_{n}\left(p+\frac{u}{n r_{n}^{d}} e_{p}\right)\right)\right] g\left(p+\frac{u}{n r_{n}^{d}} e_{p}\right) \Theta\left(p, \frac{u}{n r_{n}^{d}}\right) \mathrm{d} u$.
By Lemma A.7, $\sup _{p \in \partial S_{\bar{f}}} \kappa_{p}\left(\varepsilon_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Thus, the equality above together with Lemma A. 8 show that

$$
\begin{aligned}
& n r_{n}^{d} I(p)=v_{n}^{-1} \int_{0}^{n r_{n}^{d} \kappa_{p}\left(\varepsilon_{n}\right)} \exp \left[-u \omega_{d} D_{e_{p}} f\left(p+\xi^{\prime} e_{p}\right)+n\left(r_{n}^{2 d}+r_{n}^{d+2}\right) R_{n}^{\prime}(p, u)\right] \\
& \times g\left(p+\frac{u}{n r_{n}^{d}} e_{p}\right) \Theta\left(p, \frac{u}{n r_{n}^{d}}\right) \mathrm{d} u
\end{aligned}
$$

where $\xi^{\prime}=\xi^{\prime}(n, p, u) \in\left(0, \kappa_{p}\left(\varepsilon_{n}\right)\right)$ and where

$$
\sup _{n} \sup _{p \in \partial S_{f}} \sup _{0 \leq u \leq n r r_{n}^{d} \kappa_{p}\left(\varepsilon_{n}\right)}\left|R_{n}^{\prime}(p, u)\right|<\infty .
$$

Consequently,

$$
\begin{align*}
& n r_{n}^{d} v_{n} I(p)=\int_{0}^{n r_{n}^{d} \kappa_{p}\left(\varepsilon_{n}\right)} \exp \left[-u \omega_{d} D_{e_{p}} f\left(p+\xi^{\prime} e_{p}\right)+n\left(r_{n}^{2 d}+r_{n}^{d+2}\right) R_{n}^{\prime}(p, u)\right] \\
& \times g\left(p+\frac{u}{n r_{n}^{d}} e_{p}\right) \Theta\left(p, \frac{u}{n r_{n}^{d}}\right) \mathrm{d} u . \tag{4.4}
\end{align*}
$$

We deduce from Lemma A. 7 and Assumption 5 that there exists an $\alpha>0$ such that, for n large enough,

$$
\begin{equation*}
\inf _{p \in \partial S_{\bar{f}}} D_{e_{p}} f\left(p+\xi^{\prime} e_{p}\right) \geq \alpha \tag{4.5}
\end{equation*}
$$

Recall that g is bounded, that $n\left(r_{n}^{2 d}+r_{n}^{d+2}\right) \rightarrow 0$, and that Θ is \mathcal{C}^{∞} with $\Theta(p, 0)=1$. In particular, this implies that the domination condition of Lebesgue Theorem is satisfied by the function under the integral in (4.4). Moreover, g is continuous, and $n r_{n}^{d} \kappa_{p}\left(\varepsilon_{n}\right) \rightarrow \infty$ [Lemma A.7]. These facts, together with Lebesgue Theorem show that, for all $p \in \partial S_{\bar{f}}$,

$$
n r_{n}^{d} v_{n} I(p) \rightarrow \int_{0}^{\infty} \exp \left[-u \omega_{d} D_{e_{p}} f(p)\right] g(p) \mathrm{d} u=\omega_{d}^{-1} \frac{g(p)}{D_{e_{p}} f(p)}
$$

Moreover, using (4.4) and (4.5), we have

$$
\sup _{n} \sup _{p \in \partial S_{\bar{f}}} n r_{n}^{d} v_{n} I(p)<\infty .
$$

Since $v_{\sigma}\left(\partial S_{\bar{f}}\right)<\infty$ by compacity of $\partial S_{\bar{f}}$, it follows from Lebesgue Theorem and identity (4.3) that

$$
n r_{n}^{d} v_{n} I=\int_{\partial S_{\bar{f}}} n r_{n}^{d} v_{n} I(p) \mathrm{d} v_{\sigma}(p) \rightarrow \omega_{d}^{-1} \int_{\partial S_{\bar{f}}} \frac{g(p)}{D_{e_{p}} f(p)} \mathrm{d} v_{\sigma}(p) \quad \text { as } n \rightarrow \infty .
$$

Finally, using (4.2), we conclude that

$$
n r_{n}^{d} v_{n} \mathbb{E} d_{g}\left(\hat{S}_{n}, S_{f}\right) \rightarrow \omega_{d}^{-1} \int_{\partial S_{\bar{f}}} \frac{g(p)}{D_{e_{p}} f(p)} \mathrm{d} v_{\sigma}(p),
$$

as desired.

A Some auxiliary results

A. 1 Auxiliary results for the proof of Theorem 3.1

Lemma A. 1 Suppose that Assumption 1 and Assumption 2.a-2.d hold for some $k \in\{1,2\}$. Then, for all $x \in S_{f}$, there exists a quantity $K_{n}(x)$ such that $\sup _{n} \sup _{x \in S_{f}}\left|K_{n}(x)\right|<\infty$ and

$$
\mathbb{P}\left(X \in \mathcal{B}\left(x, r_{n}\right)\right)=r_{n}^{d} \omega_{d} f(x)+r_{n}^{d+k} K_{n}(x),
$$

where X is a random variable with density f.

Proof Let us define the set \mathcal{I}_{n} as

$$
\mathcal{I}_{n}=\left\{x \in S_{f}: \operatorname{dist}\left(x, \partial S_{f}\right)>r_{n}\right\} .
$$

Suppose first that $x \in \mathcal{I}_{n}$. Since f is twice continuously differentiable on $\stackrel{\circ}{S}_{f}$ and $\mathcal{B}\left(x, r_{n}\right) \subset \stackrel{\circ}{S}_{f}$, one has, for all $u \in \mathcal{B}\left(x, r_{n}\right)$, by Taylor Formula,

$$
f(u)=f(x)+(u-x)^{t} \nabla f(x)+\frac{1}{2}(u-x)^{t} \mathrm{H} f(\xi)(u-x)
$$

for some $\xi=\xi(x, u)$ in the interior of $\mathcal{B}\left(x, r_{n}\right)$, where $\nabla f(x)$ stands for the gradient of f at the point x. Observe that, by symmetry,

$$
\int_{\mathcal{B}\left(x, r_{n}\right)}(u-x)^{t} \nabla f(x) \mathrm{d} u=0
$$

so that

$$
\begin{equation*}
\mathbb{P}\left(X \in \mathcal{B}\left(x, r_{n}\right)\right)=\int_{\mathcal{B}\left(x, r_{n}\right)} f(u) \mathrm{d} u=r_{n}^{d} \omega_{d} f(x)+r_{n}^{d+2} J_{n}(x), \tag{A.1}
\end{equation*}
$$

where

$$
J_{n}(x)=\frac{1}{r_{n}^{d+2}} \int_{\mathcal{B}\left(x, r_{n}\right)}(u-x)^{t} \mathrm{H} f(\xi)(u-x) \mathrm{d} u
$$

satisfies $\sup _{n} \sup _{x \in \mathcal{I}_{n}}\left|J_{n}(x)\right|<\infty$ according to Assumption 2.d.
On the other hand, suppose now that $x \in S_{f}-\mathcal{I}_{n}$. By Assumption 1, each $u \in \mathcal{B}\left(x, r_{n}\right) \cap S_{f}$ may be expressed as $u=p+\alpha e_{p}^{f}$, where $p \in \partial S_{f}$ and $0 \leq \alpha \leq C r_{n}$. Using Assumption 2.a and Assumption 2.b, we deduce that

$$
f(u)=\frac{\alpha^{k}}{k} D_{e_{p}^{f}}^{k} f\left(p+\xi e_{p}^{f}\right),
$$

for some $\xi \in(0, \alpha)$. But, by Assumption 2.c,

$$
\sup _{n} \sup _{p \in \partial S_{f}}\left|D_{e_{p}^{f}}^{k} f\left(p+\xi e_{p}^{f}\right)\right|<\infty
$$

so that, consequently,

$$
\begin{equation*}
f(u) \leq C r_{n}^{k} \tag{A.2}
\end{equation*}
$$

for some constant $C>0$. Therefore, in this case,

$$
\begin{equation*}
\mathbb{P}\left(X \in \mathcal{B}\left(x, r_{n}\right)\right)=\int_{\mathcal{B}\left(x, r_{n}\right) \cap S_{f}} f(u) \mathrm{d} u \leq C r_{n}^{d+k} \tag{A.3}
\end{equation*}
$$

Using (A.1), we can now write, for all $x \in S_{f}$,

$$
\begin{aligned}
\mathbb{P}\left(X \in \mathcal{B}\left(x, r_{n}\right)\right)= & {\left[r_{n}^{d} \omega_{d} f(x)+r_{n}^{d+2} J_{n}(x)\right] \mathbf{1}_{\mathcal{I}_{n}}(x) } \\
& +\mathbb{P}\left(X \in \mathcal{B}\left(x, r_{n}\right)\right) \mathbf{1}_{\mathcal{I}_{n}^{c}}(x) \\
= & r_{n}^{d} \omega_{d} f(x)+r_{n}^{d+k} K_{n}(x),
\end{aligned}
$$

where K_{n} is defined, for all $x \in S_{f}$, by
$K_{n}(x)=r_{n}^{2-k} J_{n}(x) \mathbf{1}_{\mathcal{I}_{n}}(x)-r_{n}^{-k} \omega_{d} f(x) \mathbf{1}_{\mathcal{I}_{n}^{c}}(x)+r_{n}^{-d-k} \mathbb{P}\left(X \in \mathcal{B}\left(x, r_{n}\right)\right) \mathbf{1}_{\mathcal{I}_{n}^{c}}(x)$.
Clearly, K_{n} satisfies the required condition $\sup _{n} \sup _{x \in S_{f}}\left|K_{n}(x)\right|<\infty$ according to (A.2) and (A.3).

Definition of $\kappa_{p}^{h}(\varepsilon)$. Let $\mathcal{D} \subset \mathbb{R}^{d}$ and $h: \mathcal{D} \rightarrow \mathbb{R}_{+}$be a function with compact support S_{h} and smooth boundary ∂S_{h}. Fix $\varepsilon_{0}>0$, small enough such that there exists a tubular neighborhood of ∂S_{h} of radius ρ containing the set [$h \leq \varepsilon_{0}$]. For all $p \in \partial S_{h}$ and $0<\varepsilon<\varepsilon_{0}$, we define $\kappa_{p}^{h}(\varepsilon)$ by

$$
\begin{equation*}
\kappa_{p}^{h}(\varepsilon)=\operatorname{dist}\left(p,[h=\varepsilon] \cap\left\{x \in \mathbb{R}^{d}: x=p+v e_{p}^{h}, v \in[0, \rho]\right\}\right) . \tag{A.4}
\end{equation*}
$$

In other words, $\kappa_{p}^{h}(\varepsilon)$ represents the minimum distance between p and the points x of $[h=\varepsilon]$ such that the vector $x-p$ is orthogonal to ∂S_{h}. Note that when $h>0$ on $\stackrel{\circ}{S}_{h}$ and ε_{0} is small enough, such a point x is unique.

Whenever $h \equiv f$, the behavior of $\kappa_{p}^{f}(\varepsilon)$ with respect to p and ε is controlled by the following lemma.

Lemma A. 2 Suppose that Assumption 1, Assumption 2.a - 2.c, and Assumption $2 . e$ hold for some $k \in\{1,2\}$. Then,

$$
\sup _{p \in \partial S_{f}} \kappa_{p}^{f}(\varepsilon) \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0
$$

Moreover, if $\varepsilon_{0}>0$ is small enough, there exists $C>0$ such that, for all $p \in \partial S_{f}$,

$$
\kappa_{p}^{f}(\varepsilon) \geq C \varepsilon, \forall \varepsilon \in\left(0, \varepsilon_{0}\right) .
$$

Proof By Assumption 1, there exists a tubular neighborhood of ∂S_{f} of radius $\rho>0$. Without loss of generality, ε_{0} may be chosen in such a way that the set $\left[f \leq \varepsilon_{0}\right] \subset \mathcal{V}\left(\partial S_{f}, \rho\right)$ [This comes from the simple-connectedness of $[f>0$] by Assumption 1]. Furthermore, by Assumption 2.c and Assumption 2.e, one can assume that $\sup _{0 \leq u \leq \rho} \sup _{p \in \partial S_{f}}\left|D_{e_{p}^{f}}^{k} f\left(p+u e_{p}^{f}\right)\right|<\infty$ and
$\inf _{0 \leq u \leq \rho} \inf _{p \in \partial S_{f}} D_{e_{p}^{f}}^{k} f\left(p+u e_{p}^{f}\right)>0$. Then, for all $\varepsilon \leq \varepsilon_{0}$ and all $p \in \partial S_{f}$, we have $\kappa_{p}^{f}(\varepsilon) \leq \rho$.

Observe now that, for all $p \in \partial S_{f}$ and $\varepsilon \leq \varepsilon_{0}, f\left(p+\kappa_{p}^{f}(\varepsilon) e_{p}^{f}\right)=\varepsilon$. Consequently, according to Assumption 2.a and Assumption 2.b, we deduce from Taylor Formula that

$$
\varepsilon=f\left(p+\kappa_{p}^{f}(\varepsilon) e_{p}^{f}\right)=\frac{\kappa_{p}^{f}(\varepsilon)^{k}}{k} D_{e_{p}^{f}}^{k} f\left(p+\xi e_{p}^{f}\right),
$$

for some $\xi \in\left(0, \kappa_{p}^{f}(\varepsilon)\right)$. Taking the infimum over ξ, and next, the supremum over p in the above equation, yields the existence of a constant $C>0$ such that, for all $\varepsilon \leq \varepsilon_{0}$,

$$
\varepsilon \geq C \sup _{p \in \partial S_{f}} \kappa_{p}^{f}(\varepsilon)^{k}
$$

This proves the first statement of the lemma. Finally, using the fact that ρ can be chosen smaller than 1, a similar argument shows that there exists a constant $C>0$ such that

$$
C \varepsilon \leq \sup _{p \in \partial S_{f}} \kappa_{p}^{f}(\varepsilon)
$$

for all $\varepsilon \leq \varepsilon_{0}$.
Lemma A. 3 Suppose that Assumption 1 and Assumption 2.a-2.d hold for some $k \in\{1,2\}$. Let $\gamma_{0}>0$ be small enough. Then, for all $p \in \partial S_{f}$ and $0 \leq u \leq\left(n r_{n}^{d}\right)^{1 / k} \gamma_{0}$, one has, with the notation of Lemma A.1,

$$
\begin{aligned}
& \log \left[1-r_{n}^{d} \omega_{d} f\left(p+\frac{u}{\left(n r_{n}^{d}\right)^{1 / k}} e_{p}^{f}\right)-r_{n}^{d+k} K_{n}\left(p+\frac{u}{\left(n r_{n}^{d}\right)^{1 / k}} e_{p}^{f}\right)\right] \\
& \quad=-\frac{u^{k} \omega_{d}}{k n} D_{e_{p}^{f}}^{k} f\left(p+\xi e_{p}^{f}\right)-\frac{1}{2} \frac{u^{2 k} \omega_{d}^{2}}{k^{2} n^{2}}\left[D_{e_{p}^{f}}^{k} f\left(p+\xi e_{p}^{f}\right)\right]^{2}+r_{n}^{d+k} R_{n}(p, u),
\end{aligned}
$$

for some $\xi=\xi(n, p, u) \in\left(0, \gamma_{0}\right)$ and some $R_{n}(p, u)$ satisfying

$$
\sup _{n} \sup _{0 \leq u \leq\left(n r r_{n}^{d}\right)^{1 / k} \gamma_{0}} \sup _{p \in \partial S_{f}}\left|R_{n}(p, u)\right|<\infty
$$

Proof In the sequel, e_{p} stands for e_{p}^{f} and $\gamma_{0}>0$ is chosen such that $p+u e_{p} \in S_{f}$ for all $p \in \partial S_{f}$ and $0 \leq u \leq \gamma_{0}$. Let ψ_{n} be the function defined for all $x \in S_{f}$ by

$$
\psi_{n}(x)=r_{n}^{d} \omega_{d} f(x)+r_{n}^{d+k} K_{n}(x),
$$

where $K_{n}(x)$ is as in Lemma A.1. Using the expansion

$$
\log (1-\varepsilon)=-\varepsilon-\frac{\varepsilon^{2}}{2}+\mathrm{O}\left(\varepsilon^{3}\right)
$$

we obtain, for all $p \in \partial S_{f}$ and $0 \leq u \leq\left(n r_{n}^{d}\right)^{1 / k} \gamma_{0}$,

$$
\begin{align*}
& \log \left[1-\psi_{n}\left(p+\frac{u}{\left(n r_{n}^{d}\right)^{1 / k}} e_{p}\right)\right] \\
& \quad=-\psi_{n}\left(p+\frac{u}{\left(n r_{n}^{d}\right)^{1 / k}} e_{p}\right)-\frac{1}{2} \psi_{n}^{2}\left(p+\frac{u}{\left(n r_{n}^{d}\right)^{1 / k}} e_{p}\right)+r_{n}^{d+k} R_{n, 1}(p, u), \tag{A.5}
\end{align*}
$$

where $R_{n, 1}(p, u)$ satisfies

$$
\sup _{n} \sup _{0 \leq u \leq\left(n r_{n}^{d}\right)^{1 / k} \gamma_{0}} \sup _{p \in \partial S_{f}}\left|R_{n, 1}(p, u)\right|<\infty
$$

according to Lemma A.1.
On the one hand, by Assumption 2.a, by Assumption 2.b, and by Taylor Formula, we obtain, for all $p \in \partial S_{f}$,

$$
\begin{align*}
\psi_{n} & \left(p+\frac{u}{\left(n r_{n}^{d}\right)^{1 / k}} e_{p}\right) \\
& =r_{n}^{d} \omega_{d} f\left(p+\frac{u}{\left(n r_{n}^{d}\right)^{1 / k}} e_{p}\right)+r_{n}^{d+k} K_{n}\left(p+\frac{u}{\left(n r_{n}^{d}\right)^{1 / k}} e_{p}\right) \\
& =\frac{u^{k} \omega_{d}}{k n} D_{e_{p}}^{k} f\left(p+\xi e_{p}\right)+r_{n}^{d+k} K_{n}\left(p+\frac{u}{\left(n r_{n}^{d}\right)^{1 / k}} e_{p}\right), \tag{A.6}
\end{align*}
$$

for some $\xi=\xi(n, p, u) \in\left(0, \gamma_{0}\right)$.
On the other hand, employing Lemma A.1,

$$
\psi_{n}^{2}\left(p+\frac{u}{\left(n r_{n}^{d}\right)^{1 / k}} e_{p}\right)=r_{n}^{2 d} \omega_{d}^{2} f^{2}\left(p+\frac{u}{\left(n r_{n}^{d}\right)^{1 / k}} e_{p}\right)+r_{n}^{d+k} R_{n, 2}(p, u)
$$

where the quantity $R_{n, 2}(p, u)$ satisfies

$$
\sup _{n} \sup _{0 \leq u \leq\left(n r_{n}^{d}\right)^{1 / k} \gamma_{0}} \sup _{p \in \partial S_{f}}\left|R_{n, 2}(p, u)\right|<\infty .
$$

An application of Taylor Formula leads to

$$
\begin{align*}
\psi_{n}^{2}\left(p+\frac{u}{\left(n r_{n}^{d}\right)^{1 / k}} e_{p}\right) & =r_{n}^{2 d} \omega_{d}^{2}\left[\frac{u^{k}}{k n r_{n}^{d}} D_{e_{p}}^{k} f\left(p+\xi e_{p}\right)\right]^{2}+r_{n}^{d+k} R_{n, 2}(p, u) \\
& =\frac{u^{2 k} \omega_{d}^{2}}{k^{2} n^{2}}\left[D_{e_{p}}^{k} f\left(p+\xi e_{p}\right)\right]^{2}+r_{n}^{d+k} R_{n, 2}(p, u) \tag{A.7}
\end{align*}
$$

Finally, setting

$$
R_{n}(p, u)=R_{n, 1}(p, u)-K_{n}\left(p+\frac{u}{\left(n r_{n}^{d}\right)^{1 / k}} e_{p}\right)-\frac{1}{2} R_{n, 2}(p, u)
$$

we deduce from (A.5), (A.6), and (A.7) that

$$
\begin{aligned}
& \log \left[1-\psi_{n}\left(p+\frac{u}{\left(n r_{n}^{d}\right)^{1 / k}} e_{p}\right)\right] \\
& \quad=-\frac{u^{k} \omega_{d}}{k n} D_{e_{p}}^{k} f\left(p+\xi e_{p}\right)-\frac{u^{2 k} \omega_{d}^{2}}{2 k^{2} n^{2}}\left[D_{e_{p}}^{k} f\left(p+\xi e_{p}\right)\right]^{2}+r_{n}^{d+k} R_{n}(p, u),
\end{aligned}
$$

where $R_{n}(p, u)$ satisfies

$$
\sup _{n} \sup _{0 \leq u \leq\left(n r_{n}^{d}\right)^{1 / k} \gamma_{0}} \sup _{p \in \partial S_{f}}\left|R_{n}(p, u)\right|<\infty .
$$

A. 2 Auxiliary results for the proof of Theorem 3.2

We consider in this section a probability density f with support the closed unit Euclidean ball of \mathbb{R}^{d}. Let S^{d-1} be the unit sphere of \mathbb{R}^{d}. The following technical lemma, which is stated without proof, is elementary and may be obtained by tedious but easy calculus.

Lemma A. 4 Let $a \in\left(0, r_{n}\right)$, where $r_{n}<1$. Then,
(i) The trace of $\mathcal{B}\left(p-a e_{p}^{f}, r_{n}\right)$ in S^{d-1} is the geodesic ball, further denoted by $\mathcal{B}_{\sigma}\left(p, \rho\left(a, r_{n}\right)\right)$, in S^{d-1} of center p and radius $\rho\left(a, r_{n}\right)$ given by:

$$
\rho\left(a, r_{n}\right)=\arccos \left(\frac{(1+a)^{2}+1-r_{n}^{2}}{2(1+a)}\right) .
$$

In particular, $\rho\left(\frac{r_{n}}{2}, r_{n}\right)=\arccos \left(1-\frac{3}{4} \frac{r_{n}^{2}}{2+r_{n}}\right)$ and there exists a constant $C>0$ such that

$$
\rho\left(\frac{r_{n}}{2}, r_{n}\right)>C r_{n}
$$

for all $0<r_{n}<1$.
(ii) Let $\rho_{n}=\rho\left(\frac{r_{n}}{2}, r_{n}\right)$. For all $p \in S^{d-1}$, and for all $q \in \mathcal{B}_{\sigma}\left(p, \rho_{n}\right)$, the trace of the half-line $\left\{q+v e_{q}^{f}: v \geq 0\right\}$ in $\partial \mathcal{B}\left(p-\frac{r_{n}}{2} e_{p}^{f}, r_{n}\right)$ is the point $q+\omega\left(q, r_{n}\right) e_{q}^{f}$ of \mathbb{R}^{d}, where $\omega\left(q, r_{n}\right) \geq 0$ does not depend on p. For a fixed value of r_{n}, the map $q \mapsto \omega\left(q, r_{n}\right)$ is a decreasing function of the
geodesic distance $d_{\sigma}(q, p)$ on S^{d-1}. Moreover, there exists a constant $C>0$ such that

$$
\omega\left(q, r_{n}\right)>C r_{n}
$$

for all q with $d_{\sigma}(q, p) \leq \rho_{n} / 2$ and for all $0<r_{n}<1$.
Lemma A. 5 Suppose that Assumption 2.a-2.e hold for some $k \in\{1,2\}$. Let $0<r_{n}<1$. For all $p \in S^{d-1}$, let $p_{n}\left(p-\frac{r_{n}}{2} e_{p}^{f}\right)=\mathbb{P}\left(\operatorname{dist}\left(p-\frac{r_{n}}{2} e_{p}^{f}, X\right) \leq r_{n}\right)$, where X is a random variable with density f. Then there exists a constant $C>0$ such that

$$
p_{n}\left(p-\frac{r_{n}}{2} e_{p}^{f}\right) \geq C r_{n}^{d+k}
$$

for all $p \in S^{d-1}$ and for all $0<r_{n}<1$.
Proof In the sequel, for all $q \in S^{d-1}, e_{q}$ stands for e_{q}^{f}. Using the notation of Lemma A.4, we have by (B.1),

$$
\begin{aligned}
p_{n}\left(p-\frac{r_{n}}{2} e_{p}^{f}\right) & =\int_{\mathcal{B}_{\sigma}\left(p, \rho_{n}\right)} \int_{0}^{\omega\left(q, r_{n}\right)} f\left(q+u e_{q}\right) \Theta(q, u) \mathrm{d} u \mathrm{~d} v_{\sigma}(q) \\
& \geq \int_{\mathcal{B}_{\sigma}\left(p, \rho_{n} / 2\right)} \int_{0}^{\omega\left(q, r_{n}\right)} f\left(q+u e_{q}\right) \Theta(q, u) \mathrm{d} u \mathrm{~d} v_{\sigma}(q) .
\end{aligned}
$$

By Lemma A.4, there exists a constant $C>0$ such that $\omega\left(q, r_{n}\right) \geq C r_{n}$ for all $q \in \mathcal{B}_{\sigma}\left(p, \rho_{n} / 2\right)$, and for all r_{n}. Consequently,

$$
p_{n}\left(p-\frac{r_{n}}{2} e_{p}^{f}\right) \geq \int_{\mathcal{B}_{\sigma}\left(p, \rho_{n} / 2\right)} \int_{0}^{C r_{n}} f\left(q+u e_{q}\right) \Theta(q, u) \mathrm{d} u \mathrm{~d} v_{\sigma}(q) .
$$

Now differentiating k-times yields the inequalities

$$
\begin{aligned}
p_{n}\left(p-\frac{r_{n}}{2} e_{p}^{f}\right) & \geq \int_{\mathcal{B}_{\sigma}\left(p, \rho_{n} / 2\right)} \int_{0}^{C r_{n}} D_{e_{q}}^{k} f\left(q+\xi e_{q}\right) u^{k} \Theta(q, u) \mathrm{d} u \mathrm{~d} v_{\sigma}(q) \\
& \geq \int_{\mathcal{B}_{\sigma}\left(p, \rho_{n} / 2\right)} D_{e_{q}}^{k} f\left(q+\xi e_{q}\right) \frac{C^{k+1}}{k+1} r_{n}^{k+1} \mathrm{~d} v_{\sigma}(q) \\
& \geq C v_{\sigma}\left(\mathcal{B}_{\sigma}\left(p, \rho_{n} / 2\right)\right) r_{n}^{k+1} \\
& \geq C \omega_{\sigma}^{d-1}\left(\rho_{n} / 2\right)^{d-1} r_{n}^{k+1},
\end{aligned}
$$

where ω_{σ}^{d-1} is the volume of the geodesic ball in S^{d-1} with radius 1. By Lemma A.4, there exists another constant $C>0$ such that $\rho>C r_{n}$ and $\omega\left(p_{\rho}\right)>C r_{n}$. This leads to the desired result.

A. 3 Auxiliary results for the proof of Theorem 4.2

Lemma A. 6 Suppose that $S_{g} \subset S_{f}$ and $\partial S_{f} \cap \partial S_{g}=\emptyset$. Then, for all $x \in S_{g}$, there exists a quantity $J_{n}(x)$ such that $\sup _{n} \sup _{x \in S_{g}}\left|J_{n}(x)\right|<\infty$ and

$$
\mathbb{P}\left(X \in \mathcal{B}\left(x, r_{n}\right)\right)=r_{n}^{d} \omega_{d} f(x)+r_{n}^{d+2} J_{n}(x),
$$

where X is a random variable with density f.
Proof Since $S_{g} \subset S_{f}$ and $\partial S_{f} \cap \partial S_{g}=\emptyset$, for all $x \in S_{g}$ and all n large enough, the balls $\mathcal{B}\left(x, r_{n}\right)$ are contained in $\stackrel{\circ}{S}_{f}$. Recalling equality (A.1), the result is a straightforward consequence from the fact that f is twice continuously differentiable on $\stackrel{\circ}{S}_{f}$.

The proofs of Lemma A. 7 and Lemma A. 8 below are similar to the proofs of Lemma A. 2 and Lemma A.3, respectively. Recall that $\kappa_{p}^{\bar{f}}(\varepsilon)$ is defined in (A.4).

Lemma A. 7 Suppose that $S_{g} \subset S_{f}$ and $\partial S_{f} \cap \partial S_{g}=\emptyset$, and that Assumption 4 and Assumption 5 hold. Then,

$$
\sup _{p \in \partial S_{\bar{f}}} \kappa_{p}^{\bar{f}}(\varepsilon) \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0
$$

Moreover, if $\varepsilon_{0}>0$ is small enough, there exists $C>0$ such that, for all $p \in \partial S_{\bar{f}}$,

$$
\kappa_{p}^{\bar{f}}(\varepsilon) \geq C \varepsilon, \forall \varepsilon \in\left(0, \varepsilon_{0}\right) .
$$

Lemma A. 8 Suppose that $S_{g} \subset S_{f}$ and $\partial S_{f} \cap \partial S_{g}=\emptyset$, and that Assumption 4 holds. Let $\gamma_{0}>0$ be small enough. Then, for all $p \in \partial S_{\bar{f}}$ and $0 \leq u \leq n r_{n}^{d} \gamma_{0}$, one has, with the notation of Lemma A.6,

$$
\begin{aligned}
& \log \left[1-r_{n}^{d} \omega_{d} f\left(p+\frac{u}{n r_{n}^{d}} e_{p}^{\bar{f}}\right)-r_{n}^{d+2} J_{n}\left(p+\frac{u}{n r_{n}^{d}} e_{p}^{\bar{f}}\right)\right] \\
& \quad=-r_{n}^{d} \omega_{d} \inf _{S_{g}} f-\frac{u \omega_{d}^{d}}{n} D_{e_{p}^{\bar{f}}} f\left(p+\xi^{\prime} e_{p}^{\bar{f}}\right)+\left(r_{n}^{2 d}+r_{n}^{d+2}\right) R_{n}^{\prime}(p, u),
\end{aligned}
$$

for some $\xi^{\prime}=\xi^{\prime}(n, p, u) \in\left(0, \gamma_{0}\right)$ and some $R_{n}^{\prime}(p, u)$ satisfying

$$
\sup _{n} \sup _{0 \leq u \leq n r r_{n}^{d} \gamma_{0}} \sup _{p \in \partial S_{\mathcal{F}}}\left|R_{n}^{\prime}(p, u)\right|<\infty .
$$

B Geometry

Let (M, σ) be a smooth, closed (i.e., compact and without boundary), Riemannian submanifold of \mathbb{R}^{d}, with Riemannian metric σ taken as $\sigma=i^{*} \delta$, where $i: M \rightarrow \mathbb{R}^{d}$ is the canonical injection, and where δ is the Euclidean metric on \mathbb{R}^{d}, i.e., σ is the pullback of δ by i. The Riemannian volume measure on (M, σ) will be denoted by v_{σ}.

Let $T_{p} M$ be the tangent space to M at p, and let $T M$ be the tangent bundle of M. For all $p \in M, T_{p} M$ may be considered as a subspace of \mathbb{R}^{d} via the canonical identification of $T_{p} \mathbb{R}^{d}$ with \mathbb{R}^{d} itself. Via this identification, the normal space $T_{p} M^{\perp}$ to M at p is the orthogonal complement of $T_{p} M$ in \mathbb{R}^{d}. The normal bundle of M in \mathbb{R}^{d} is defined by $T M^{\perp}=\cup_{p \in M} T_{p} M^{\perp}$, with bundle projection map $\pi: T M^{\perp} \rightarrow M$ defined by $\pi\langle p, v\rangle=p$, i.e., each element $<p, v>$ of $T M^{\perp}$ is mapped on p by π.

Now let $\theta: T M^{\perp} \rightarrow \mathbb{R}^{d}$ be given by $\theta\langle p, v\rangle=p+v$. Also let $T M_{\varepsilon}^{\perp}=\{\langle p, v\rangle \in$ $\left.T M^{\perp}:\|v\|<\varepsilon\right\}$. Then the Tubular Neighborhood Theorem [see e.g., Bredon (1993, p. 93)] states that there exists an $\varepsilon>0$ such that $\theta: T M_{\varepsilon}^{\perp} \rightarrow \mathbb{R}^{d}$ is a diffeomorphism onto the neighborhood $\mathcal{V}(M, \varepsilon)=\left\{x \in \mathbb{R}^{d}: \operatorname{dist}(x, M)<\varepsilon\right\}$ of M in \mathbb{R}^{d}, which is called a tubular neighborhood of radius ε of M in \mathbb{R}^{d}.

Denote by λ^{d} the Lebesgue measure on \mathbb{R}^{d}. On $T M_{\varepsilon}^{\perp}$, there is the canonical measure $v_{g} \otimes \lambda^{1}$ defined by

$$
\left(v_{g} \otimes \lambda^{1}\right)(B)=\int_{\pi(B)} \lambda^{1}\left(\pi^{-1}(p)\right) \mathrm{d} v_{\sigma}(p),
$$

for all Borel set $B \subset T M_{\varepsilon}^{\perp}$. There is also on $T M_{\varepsilon}^{\perp}$ the measure $\theta^{*} \lambda^{d}$, i.e., the pullback of λ^{d} on \mathbb{R}^{d} by θ. Now let $\Theta \in \mathcal{C}^{\infty}\left(T M_{\varepsilon}^{\perp}\right)$ be the function such that $\mathrm{d}\left(\theta^{*} \lambda^{d}\right)=\Theta \mathrm{d}\left(v_{\sigma} \otimes \lambda^{1}\right)$. This function satisfies $\Theta(<p, 0>)=1$. Then, given an integrable function φ on \mathbb{R}^{d}, its integral on a tubular neighborhood of M with respect to λ^{d} may be expressed as

$$
\begin{aligned}
\int_{\mathcal{V}(M, \varepsilon)} \varphi(x) \mathrm{d} \lambda^{d}(x) & =\int_{T M_{\varepsilon}^{\perp}}(\varphi \circ \theta)(<p, v>) \mathrm{d}\left(v_{\sigma} \otimes \lambda^{1}\right)(<p, v>) \\
& =\int_{M} \int_{u \in T_{p} M^{\perp}:\|u\|<\varepsilon} \varphi(p+u) \Theta(p, u) \mathrm{d} \lambda^{1}(u) \mathrm{d} v_{\sigma}(p) .
\end{aligned}
$$

Introducing a unit-norm section $\left\{e_{p}: p \in M\right\}$ of $T M^{\perp}$, i.e., a continuous unit-norm normal vector field on M, yields the more convenient expression:

$$
\begin{equation*}
\int_{\mathcal{V}(M, \varepsilon)} \varphi(x) \mathrm{d} \lambda^{d}(x)=\int_{M} \int_{-\varepsilon}^{\varepsilon} \varphi\left(p+u e_{p}\right) \Theta(p, u) \mathrm{d} u \mathrm{~d} v_{\sigma}(p) . \tag{B.1}
\end{equation*}
$$

Acknowledgements The authors are indebted to two referees for a very careful reading of the paper and stimulating questions and remarks.

References

[1] Baíllo, A., Cuevas, A. and Justel, A. (2000). Set estimation and nonparametric detection, Canad. J. Statist., Vol. 28, pp. 765-782.
[2] Bredon, G.E. (1993). Topology and Geometry, Volume 139 of Graduate Texts in Mathematics, Springer-Verlag, New York.
[3] Cadre, B. (2006). Kernel estimation of density level sets, J. Multivariate Anal., Vol. 97, pp. 999-1023.
[4] Chavel, I. (1993). Riemannian Geometry: A Modern Introduction, Cambridge University Press, Cambridge.
[5] Chevalier, J. (1976). Estimation du support et du contenu du support d'une loi de probabilité, Ann. Inst. H. Poincaré Sec. B, Vol. 12, pp. 339364.
[6] Cuevas, A. (1990). On pattern analysis in the non-convex case, Kybernetes, Vol. 19, pp. 26-33.
[7] Cuevas, A. and Fraiman, R. (1997). A plug-in approach to support estimation, Ann. Statist., Vol. 25, pp. 2300-2312.
[8] Cuevas, A. and Rodríguez-Casal, A. (2004). On boundary estimation, Adv. Appl. Prob., Vol. 36, pp. 340-354.
[9] Devroye, L. and Wise, G. (1980). Detection of abnormal behavior via nonparametric estimation of the support, SIAM J. Appl. Math., Vol. 38, pp. 480-488.
[10] Evans, L.C. and Gariepy, R.F. (1992). Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, Florida.
[11] Gayraud, G. (1997). Estimation of functional of density support, Math. Methods Statist., Vol. 6, pp. 26-46.
[12] Geffroy, J. (1964). Sur un problème d'estimation qéométrique, Publ. Inst. Statist. Univ. Paris, Vol. 13, pp. 191-210.
[13] Gray, A. (1990). Tubes, Addison-Wesley, Redwood City, California.
[14] Grenander, U. (1981). Abstract Inference, Wiley, New York.
[15] Härdle, W., Park, B.U. and Tsybakov, A.B. (1995). Estimation of nonsharp support boundaries, J. Multivariate Anal., Vol. 55, pp. 205-218.
[16] Klemelä, J. (2004). Complexity penalized support estimation, J. Multivariate Anal., Vol. 88, pp. 274-297.
[17] Kobayashi, S. and Nomizu, K. (1996). Foundations of Differential Geometry, Vol I \& II, Second Edition, Wiley, New York.
[18] Korostelev, A.P., Simar, L. and Tsybakov, A.B. (1995). Efficient estimation of monotone boundaries, Ann. Statist., Vol. 23, pp. 476-489.
[19] Korostelev, A.P. and Tsybakov, A.B. (1993a). Estimation of the density support and its functionals, Problems Inform. Transmission, Vol. 29, pp. 1-15.
[20] Korostelev, A.P. and Tsybakov, A.B. (1993b). Minimax Theory of Image Reconstruction, Lecture Notes in Statistics, Vol. 82, Springer-Verlag, New York.
[21] Mammen, E. and Tsybakov, A.B. (1995). Asymptotical minimax recovery of sets with smooth boundaries, Ann. Statist., Vol. 23, pp. 502-524.
[22] Polonik, W. (1995). Measuring mass concentrations and estimating density contour clusters-an excess mass approach, Ann. Statist., Vol. 23, pp. 855-881.
[23] Rényi, A. and Sulanke, R. (1963). Über die konvexe Hülle von n zufällig gewählten Punkten, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Vol. 2, pp. 75-84.
[24] Rényi, A. and Sulanke, R (1964). Über die konvexe Hülle von n zufällig gewählten Punkten, II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Vol. 3, pp. 138-147.
[25] Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J. and Williamson, R.C. (2001). Estimating the support of a high-dimensional distribution, Neural Comput., Vol. 13, pp. 1443-1471.
[26] Tsybakov, A.B. (1997). On nonparametric estimation of density level sets, Ann. Statist., Vol. 25, pp. 948-969.
[27] Walther, G. (1997). Granulometric smoothing, Ann. Statist., Vol. 25, pp. 2273-2299.

[^0]: *Corresponding author.

