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[1] A solution is provided to a common inverse problem in
satellite remote sensing, the retrieval of a variable y from a
vector x of explanatory variables influenced by a vector t of
conditioning variables. The solution is in the general form of
a field of nonlinear regression models, i.e., the relation
between y and x is modeled as a map from some space to a
subset of a function space. Elementary yet important
mathematical results are presented for fields of shifted
ridge functions, selected for their approximation properties.
These fields are shown to span a dense set and to inherit the
approximation properties of shifted ridge functions. A
serious mathematical difficulty regarding the practical
construction of continuous fields of shifted ridge functions
is pointed out; it is circumvented while providing grounding
to a large class of construction methodologies. Within this
class, a construction scheme that builds upon multilinear
interpolation is described. When applied to the retrieval of
upper-ocean chlorophyll-a concentration from space, the
solution shows potential for improved accuracy compared
with existing algorithms. INDEX TERMS: 3260Mathematical

Geophysics: Inverse theory; 4275 Oceanography: General: Remote

sensing and electromagnetic processes (0689); 3210 Mathematical

Geophysics: Modeling; 4847 Oceanography: Biological and

Chemical: Optics; 4855 Oceanography: Biological and Chemical:

Plankton. Citation: Pelletier, B., and R. Frouin (2004), Fields of

nonlinear regression models for inversion of satellite data,

Geophys. Res. Lett., 31, L16304, doi:10.1029/2004GL019840.

1. Introduction

[2] A statistical model aims at explaining an exogenous
variable y from several explanatory variables x1,. . ., xn. In
the case where x1,. . ., xn are deterministic variables, it
expresses the dependence of the expected value E[y] on
the explanatory variables and an unknown parameter vector
w, as a function f (x1,. . ., xn; w). In the random case, the
model is written conditionally to the observations, i.e., E[y]
is replaced by the conditional expected value E[yjx1,. . ., xn].
The function f is called the link function between y and
x1,. . ., xn and, depending on its expression, defines a linear
or non-linear regression statistical model. Models such as
perceptrons, falling in the class of so-called ridge construc-
tions, achieve this statistical modeling goal with several
well-known interesting properties. Let us just mention the
density or universal approximation property [Cybenko,
1989; Lin and Pinkus, 1993], and the results related to the
approximation rate, including the dimension-independent

upper bound [Barron, 1993; Burger and Neubauer, 2001;
Makovoz, 1998], and the asymptotic expression obtained by
Maiorov [1999].
[3] In this vein, we focus on a slightly different

regression problem, for which we propose a modified
solution, based on ridge function approximants, that
inherits the interesting mathematical properties mentioned
above. This problem still consists in explaining y from
x1,. . ., xn, but with the difference that, in fact, only some
of the xi, say x1,. . ., xd (d < n), convey information about
y, while the remaining variables act as parameters, or
conditioning variables, in the sense that they influence the
link function between y and the true informative variables
x1,. . ., xd.
[4] Typical examples of this kind of problem are found in

geosciences, where the observed data may depend on
several angular variables that define the geometry of the
observation process. They include the retrieval of ocean
color and aerosols from reflectance measurements in the
visible and near infrared, and the retrieval of wind speed,
salinity, and sea surface temperature from brightness tem-
perature measurements at microwave wavelengths. In ocean
color remote sensing, the objective is to estimate the
concentration of oceanic constituents, such as phytoplank-
ton chlorophyll-a. The informative variables x1, x2,. . ., xd,
in this case the top-of-atmosphere reflectance measure-
ments, depend continuously on the angular variables that
characterize the positions of the observing satellite and of
the Sun relatively to the target on the Earth’s surface. Hence
these angular variables, which obviously do not carry any
information about the chlorophyll-a concentration, have to
be taken into account, for the link function between
chlorophyll-a concentration and x1, x2,. . .., xd depends on
them.
[5] For this kind of problem, it seems natural to separate

the variables being effectively informative with respect to y,
from the conditioning variables. We shall denote by x the
d-dimensional vector of informative variables, and by t
the p-dimensional vector of conditioning variables. The
proposed solution consists in attaching to t a nonlinear
regression model explaining y from x, and where we
demand that the attachment vary smoothly in t. This
approach yields a field of nonlinear regression models
over the set of permitted values for t.
[6] The paper is organized as follows. In section 2, the

problem of interest is stated more formally, and fields of
nonlinear regression models are defined. In section 3,
construction schemes of such a model from scattered data
are presented. In section 4, results obtained by applying this
methodology to ocean color remote sensing are discussed.
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Finally, conclusions are given, as well as perspectives on
future work.

2. Function Fields and Nonlinear Regression
Model Fields

[7] Let x be a vector of explanatory variables, let t be a
vector of conditioning variables, and let y be the real
variable to be explained. Let X and T be the sets of
permitted values for x and t, respectively. We consider
statistical models of the following form:

y ¼ ft xð Þ þ �; ð1Þ

where for each t 2 T, ft is an element of a subset M of C(X),
the set of continuous real valued functions on X, and � is a
random variable of null mean and finite variance s2 that is
not correlated with x. Hence in this model, x carries
information about y, while t does not, but the link function
between y and x depends on t. The definition of the set M
will be stated later.
[8] To study the dependence of ft on t, including

continuity and regularity, we introduce the notion of a
function field over T. We shall assume that X is locally
compact and Hausdorff, and that T is compact, metric
and Hausdorff. A space S is said to be compact if every
open covering of S has a finite subcovering, and called
Hausdorff if, for any two points x 6¼ y, there exists two
disjoint open sets U and V with x 2 U, and y 2 V. The
compact subsets of Rn are well characterized; they are its
closed and bounded subsets. We define a function field
over T as being a map T ! C(X). The set of all continuous
function fields over T will be denoted by (C(X))T. The
natural topology on (C(X))T is the compact-open topology,
which is equivalent to the topology of uniform conver-
gence on compact sets, under the above assumptions
on X and T. Furthermore, there is the homeomorphism
C(X � T) !� (C(X))T [see, e.g., Bredon, 1993, pp. 437–
440]. This fact tells us that the elements of (C(X))T are in
one-to-one correspondence with the elements of C(X � T),
and that this correspondence is continuous in both directions.
Consequently, for each z 2 (C(X))T, there corresponds
the unique map z

*
of C(X � T) such that z*(x, t) = z(t)

(x), for all x 2 X and t 2 T, and conversely. Similarly, the set
of all M-valued continuous function fields over T will be
denoted by MT, for M a subset of C(X).
[9] Returning to the initial problem, equation (1) may be

rewritten equivalently as:

y ¼ z tð Þ xð Þ þ �; ð2Þ

or as

y ¼ z* x; tð Þ þ �; ð3Þ

where z belongs to MT. Hence equation (2) defines a field
of regression models over T. One may show that if M is
dense in C(X) and if T is as above, then MT is dense in
(C(X))T.
[10] Herein, we shall be interested in the case where

the model set M is the set spanned by functions of the

ridge form. A ridge function on Rd is a function of the
form h(ax + b), where h 2 C(R), a 2 Rd and b 2 R. Hence
we consider the set M = [nMn, where

Mn ¼
Xn
i¼1

cih aixþ bið Þ; bi; ci 2 R; ai 2 Rd

( )
: ð4Þ

As mentioned in the introduction, M is dense in C(Rd), in
the topology of uniform convergence on compact subsets
[Lin and Pinkus, 1993]. Let us introduce some notations.
Each element of Mn depends on parameters ci, ai, bi, for
i = 1,. . ., n, that we shall summarize by a vector qn. The
elements ofMn will be denoted by f (.; qn). Let Qn be the set
of allowable values for qn, i.e., Qn =

Qn
i¼1R � Rd � R, and

let in: Qn ! Mn be the continuous map carrying a
parameter vector qn to the corresponding model of Mn.
So in(qn) is the function f (.; qn), which associates to each
x 2 Rd the real number f (x; qn).
[11] At this point, a function field z is a relatively abstract

object: to evaluate the value z(t) (x) at some t and x, an
explicit representation of z is necessary. Consider a function
field z 2 MT. Since T is compact, we may assume, without
loss of generality, that z belongs to Mn

T, for some integer n.
We intend to build a continuous function field z 2 Mn

T via a
parameter map x: T!Qn such that z = in � x. Let us mention
the following difficulties, arising because the map in is only a
continuous surjection. First, for each z2Mn

T, there might not
exist a continuous map x: T!Qn such that z = in � x. Second,
if we proceed conversely by building z according to z = in � x,
where x is continuous, we are not sure to get all ofMn

Twhen
x is allowed to vary in all of C(T, Qn). However, it is easy to
prove that the set of continuous function fields z 2MT such
that

z* x; tð Þ ¼
Xn
i¼1

ci tð Þh ai tð Þxþ bi tð Þð Þ; ð5Þ

for some integer n, ci 2 C(T), ai 2 C(T, Rd), and bi 2 C(T), is
dense in (C(X))T. It simply follows from the fundamentality
in C(X � T) of the set of functions of the ridge form on
X � T.

3. Construction Schemes

[12] Let D be a data set of N samples (xi, ti, yi). Based on
D, we are willing to represent the link between y, x and t
through a field of nonlinear regression models of the
form defined in equation (2) where z 2 Mn

T, and where
Mn is as in (4). In light of the results stated in the previous
section, we present below two methods for constructing
z via a parameter map x: T ! Qn. In both of them, we
hypothesize normally distributed residuals, i.e., we assume
� � N (0, s2), and use the averaged sum of the squared
errors E = 1

N

PN
i¼1(yi � z(ti) (xi))

2 as the natural criterion to
be minimized for selecting a function field from the data.
The main difference with traditional parametric modeling
techniques is that here, the parameters for z are maps
T ! Qn.
[13] The first method consists in taking a parameterized

subset F r of C(T, Qn), that contains the constant and affine
functions of t (for the reason previously mentioned), where

L16304 PELLETIER AND FROUIN: NONLINEAR REGRESSION FIELDS FOR REMOTE SENSING L16304

2 of 5



r is the parameter vector. Hence the problem reduces to the
one of minimizing E with respect to r, which may be
achieved, for instance, by means of a stochastic gradient
descent algorithm or simulated annealing. However this
method may suffer from an inappropriate choice of F r,
which may yield a much more larger n than necessary. The
second method, described below, allows one to cope with
this issue.
[14] This second method consists in building a sample

of a continuous map x: T ! Qn such that the induced field
z := in � x minimizes E. The sketch is as follows. We start by
defining a set FK of real valued continuous and piecewise-
differentiable functions whose domain is a set containing T;
the value of any of these functions is obtained by multi-
linear interpolation. Next those maps are used to define a
function field over T. More precisely assume T is a
compact subset of Rp. Let t1

X,. . ., tK
X be K points of Rp,

and the vertices of a regular grid of Rp, such that T is
included in the smallest p-dimensional cube X containing
all of the tk

X. Note that K is the product of p integers ki � 2.
Hence T � X, and tk

X 2 X, for all k = 1,. . ., K. Let g1,. . .,
gK be K real numbers, and consider those continuous and
piecewise-differentiable maps g 2 C(X) such that g(tk

X) = gk
for all k = 1,. . ., K, anddefined for all t 2 X such that t 6¼
tk
X8k by:

g tð Þ ¼
X2p
i¼1

ai tð Þg tXki

� �
: ð6Þ

In this equation, the tki
X are the 2p immediate neighbors of

t on the grid, i.e., they are the vertices of a p-cube
containing t, and the coefficients ai(t) are the coefficients
of the standard p-dimensional interpolation procedure on a
p-cube. We shall denote by FK the set of all such maps.
This construction method is illustrated in Figure 1, in the
case where T is of dimension 2. Next consider those
function fields z over T, being the restrictions to T of
function fields ~z over X, of the form defined in equation (5),
where the bi, the ci, and the components of the ai, belong
to FK. Hence such a function field is parameterized by
n(d + 2)K real numbers gi

j, where 1 � i � K and 1 � j �
n(d + 2), since dim(Qn) = n(d + 2).
[15] The minimization of E with respect to them may be

performed as follows. First, pick randomly a sample (xi, ti, yi)

from D and compute the error ei of the model for that
sample. If ti falls on one of the vertices of the grid, say on
tki
X, then the error ei depends on gki

j , 1 � j � n(d + 2)K.
Otherwise, ti is different from all the vertices, and if we let
tkl
X, 1 � l � 2p, be the 2p immediate neighbors of ti on the
grid then the error ei depends on gkl

j for 1 � l � 2p and 1 �
j � n(d + 2)K. So in a second step, modify the appropriate
gk
j according to the rule:

g
j; newð Þ
k ¼ g

j; oldð Þ
k � h

@ei

@gjk
ei; ð7Þ

where h is a strictly positive scalar. Finally, repeat those
steps until convergence. By this method, we obtain from the
sets Dj

X := {(tk, gk
j ); k = 1,. . ., K} a sample of a map x

yielding the function field z = in � x. The advantages with
respect to the first method are i) that the grid may be refined
during the execution of the algorithm, and ii) that the
resulting sample may be used to choose an appropriate
model set for x that achieves, for example, a higher degree
of regularity. Indeed this algorithm performs a stochastic
gradient descent and, when the number N of samples tends
towards infinity, the resulting field z of nonlinear regression
models is expected to be a good approximation to the field
Et[yjx] over T of the (t dependent) conditional means of y
given x.

4. Application to Ocean Color Remote Sensing

[16] For this problem, we have let t = t(cos qs, cos qv, cos
Dj), where qs, qv, Dj are the Sun, view, and relative
azimuth angles, respectively, and the set T of permitted
values for t is [0, 1] � [0, 1] � [�1, 1]. The vector x is
composed of top-of-atmosphere (TOA) reflectances in
spectral bands in the visible and near-infrared, centered at
412, 443, 490, 510, 555, 670, 765, and 865 nm (case of
the Sea-viewing Wide Field-of-view Sensor). The reflec-
tances are corrected for molecular scattering effects. The
variable y is the near surface chlorophyll-a concentration
([Chl-a]). A statistically significant ensemble of about
62,000 realizations of x, encompassing the major sources
of variability (mostly due to the atmosphere) and including
maritime, continental, and urban aerosols in varied mix-
tures, has been generated via intensive use of simulation
(multiple runs of a coupled ocean-atmosphere radiative
transfer code [Vermote et al., 1997]). In the code, the
reflectance of the water body has been modeled according
to Morel and Maritorena [2001], with no variability due to
phytoplankton type. The vector x ensemble has been split
into data sets Dl

0 and Dv
0, used for model construction and

validation, respectively. Two fields F and Fn of nonlinear
regression models have been built according to the second
method, on a 2 � 2 � 3 regular grid, i.e., with vertices
belonging to {0; 1} � {0; 1} � {�1; 0; 1}. The nonlinear
regression models attached to t are elements of Mn, with
n = 10, where Mn is as in (4). The generator function
h has been taken as the hyperbolic tangent, a popular choice
in the field of ridge approximation. The number n =
10 of basis functions has been determined experimentally,
by starting at building models with a small value of n and
increasing the value gradually until no significant improve-
ment in the quality is noticed. This construction procedure

Figure 1. Construction of a real valued piecewise-
differentiable map g by multilinear interpolation. The set
T is a 2-dimensional ellipsoidal domain covered by a regular
5 � 3 grid. The value g(t) of g at some point t in the square
with corners located at t1,. . ., t4 is defined by g(t) =P4

i¼1
Ai

A1 þA2 þA3 þA4
gi, where the Ai’s are the areas depicted

in the diagram. Note that the Ai depend on t. The gi are
‘‘control points’’ in the sense that g(ti) = gi.
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leads to ridge function fields of the form given by
equation (5), where the ai(t), bi(t), and ci(t), are continuous
functions of the angular variables (8 dimensional vector-
valued for the former one, and real-valued for the latter
two). The fields have been built both on Dl

0, but in the case
of Fn, some amount of noise has been added to the data
during the execution of the stochastic algorithm. To be as
general as possible, this noise scheme has been defined as
the sum of spectrally independent and correlated noises,
with a total amount of 1%.
[17] To measure the quality of the [Chl-a] estimation, the

root mean squared error (RMS), the bias in natural logarithm
(bln), and the root mean squared error in natural logarithm
(RMSln), have been used. Their values for fields F and Fn

are summarized in Table 1. The error in [Chl-a] estimation
is on the order of 4.2% over the range 0.03–30 mgm�3, in
the case of non-noisy data, and 10% in the case of realistic
noisy data, which illustrates the efficiency and the robust-
ness of this modeling, as well as its generalization ability.
Plots of estimated versus expected [Chl-a] are given in
Figure 2, for fields F and Fn in the non-noisy and noisy
cases, showing that the estimation is accurate in the whole
range 0.03–30 mgm�3. Performance is minimally affected
by aerosol optical thickness and type. These results suggest
that the methodology based on ridge approximants has
potential for improving the accuracy of [Chl-a] retrievals,
since current processing techniques yield, without noise,
theoretical errors that may reach 20% in the presence of
non- or little absorbing aerosols and larger errors when
aerosols are strongly absorbing [Gordon, 1997].

5. Conclusions

[18] Fields of nonlinear regression models allow one to
deal with composite data, where some variables are effec-

tively explanatory, while the others are conditioning, and
without having recurse to the product space X � T, which in
some cases, such as the ocean color remote sensing prob-
lem, may be meaningless. They distinguish themselves from
classical parameterized models by the fact that their param-
eters are functions of the conditioning variables. From this
peculiarity follows a mathematical difficulty at constructing
dense sets of continuous function fields for some choices of
Mn and M, namely those subsets being not homeomorphic
to some arcwise-connected subset of an Euclidean space,
including the sets spanned by at most n functions of the
ridge form, and their union. In this particular case, the
difficulty may be circumvented, and a large class of
methodologies, comprising the presented method based on
multilinear interpolation, apply for the practical generation
of dense sets of continuous fields of ridge functions.
[19] In this nonlinear regression context, fields of shifted

ridge functions are especially interesting when no external,
problem-related, knowledge is available since, as shown
above, they inherit their interesting approximation proper-
ties. The developed methodology is rather general and could
be adapted to another set Mn, the choice of which could
be driven by application specific requirements. Extension
to the simultaneous explanation of several, eventually
correlated variables is possible, by choosing a set Mn of
vector-valued functions. Remote sensing of ocean color is a
multi-variate problem, especially complex in coastal and
estuarine waters, and one may attempt to retrieve the
concentrations of other constituents than phytoplankton, such
as yellow substances and inorganic material, or their inherent
optical properties. But it would be worth exploring the
question of whether or not this approach would be optimal,
in the statistical sense of exhaustive description. Intuitively, a
preliminary de-correlation of the variables to be explained
might lead to an explanation problem of lower complexity.

[20] Acknowledgment. This work was supported by the National
Aeronautics and Space Administration, by the National Science Founda-
tion, and by the Applied Mathematics Laboratory of the University of Le
Havre, France.

Figure 2. [Chl-a] estimated by fields F and Fn versus
expected [Chl-a] in the case of non noisy TOA reflectance
(a for F and b for Fn) and noisy TOA reflectance (c for F
and d for Fn).

Table 1. Mean Relative Error in [Chl-a] Estimation Evaluated on

Data SetsDl
0,Dv

0,Dl
1,Dv

1, for Models F (Built on Non-noisy Data)

and Fn (Built on Noisy Data), Where Dl
1 and Dv

1 are Noisy

Versions of Dl
0, Dv

0, Respectively, With a Total Amount of Noise

of 1%

F Fn

Dl
0

RMS 0.520 0.836
bln �0.000 0.000
RMSln 0.042 0.068

Dv
0

RMS 0.534 0.859
bln �0.001 �0.002
RMSln 0.042 0.070

Dl
1

RMS 1.672 1.091
bln 0.000 0.000
RMSln 0.151 0.104

Dv
1

RMS 1.650 1.118
bln �0.001 �0.002
RMSln 0.151 0.105
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