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Abstract

We study the approximation of a continuous function field

over a compact set T , by a continuous field of ridge ap-

proximants over T , named ridge function fields. We first

give general density results about function fields, and show

how they apply to ridge function fields. We next discuss

the parametrization of sets of ridge function fields, and give

additional density results for some class of continuous ridge

function fields, that admits a weak-parametrization. Finally,

we discuss the construction of the elements in that class.

Index Terms — Ridge approximation, nonlinear approxima-

tion, function field, density.

1 Introduction

In this work, we study the problem of approximating a continuous function
field over a compact set T , by a continuous field of approximants over T .
By a function field over a compact set T is meant a map defined on T , and
valued in a function space. Let C(X,R) be the space of continuous real-
valued functions on X, a subset of Rd, and let M be a subset of C(X,R).
We shall study the approximation of a map T → C(X,R) by a map T → M,
with a special emphasis in the case where M is a set of ridge function based
approximants.

A ridge function over Rd is a function of the type h(ax), where h : R →
R, a is a point of Rd, and ax is the usual inner product in Rd.
Approximation by ridge function refers to approximation by linear combina-
tions of n ridge functions, for some integer n. In the most general setting,
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the function h is allowed to vary in C(R), i.e., we consider the sets

Rn(A) = {
n

∑

i=1

cihi(aix), ci ∈ R, ai ∈ A ⊂ Rd, hi ∈ C(R,R)}, (1)

and
R(A) = ∪nRn(A), (2)

of approximants, where the directions ai belong to some subset A of Rd. If
the function h is fixed, the above sets of approximants become

Mn = {
n

∑

i=1

cih(aix), ci ∈ R, ai ∈ Rd}, (3)

and
M = ∪nMn. (4)

A slight variation on the theme consists in approximating by linear combi-
nations of shifted ridge functions, i.e., functions of the form h(ax+ b), where
a ∈ Rd, and where b ∈ R is the shift. Note that R and M are not linear
spaces.
This kind of approximation has been studied by several authors, and density
results, as well as bounds on the approximation rate, have been obtained.
In Lin and Pinkus (11), necessary and sufficient conditions on the set A are
given for R(A) to be dense in C(Rd), in the topology of uniform conver-
gence on compact sets (see also the paper by Vostrecov and Kreines (17)).
An asymptotic expression of the approximation rate has been obtained by
Maiorov (12).
Approximation by elements of the set M arose from the field of neural net-
works, where M has been shown to be dense in C(Rd) if the function h is
of sigmoidal form, i.e., if lim−∞ h(t) = 0 and lim+∞ h(t) = 1 (7)(8), and
Barron (2) obtained the dimension independant upper bound O(n−1/2) on
the approximation rate. Additional results may be found in (15)(13)(14)(6).

The particular form of approximation studied herein is motivated by a
physical problem coming from the field of geosciences, i.e., ocean sciences,
atmosphere sciences, and Earth sciences, for which the above approxima-
tion methods do not match all of the physical requirements. This problem
is known as the ocean color problem. It consists in estimating the concen-
trations of several oceanic constituants, such as the phytoplankton, from a
vector x of radiometric measurements, acquired by a sensor aboard a satel-
lite. Thus if one wishes to estimate the phytoplankton concentration from
x, a real valued function of x is seeked. In fact, those radiometric measure-
ments depend continuously on a vector t of angular variables, that are used
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to characterize the positions of the sun and of the satellite, relatively to the
observed point of the Earth’ surface. Hence the ocean color problem may be
seen as a collection of similar problems, being continuously indexed by t. In
this context, a solution may be expressed as a function field over T , the set
of allowable values for t.
It is the purpose of this paper to give grounding to this methodology, by stat-
ing results relative to its efficiency, i.e., density results. In section 2, general
density results about function fields over a compact set are given, and ap-
plied to field of ridge approximants, called ridge function fields for shorteness.
Next in section 3, we discuss the parametrization of sets of continuous ridge
function fields, which is necessary for their construction. Additional density
results for some class of continuous ridge function fields are obtained, leading
to the main results of Proposition 10 and Proposition 11. We conclude the
paper with a brief exposition of the perspectives to this work.

2 Density results

Let us start by recalling some facts related to the compact-open topology.
Let X be a locally compact Hausdorff space, and let Y be a Hausdorff space.
In the following, Y X will stand for the set of continuous functions from X to
Y .

The compact-open topology on Y X is generated by the sets S(K,U) =
{f ∈ Y X |f(K) ⊂ U}, where K is a compact subset of X, and where U is an
open subset of Y . Furthermore, if X is a compact Hausdorff space, and if Y
is metric, then the compact-open topology on Y X is induced by the metric
of the uniform convergence

dist(f, g) = sup{dist(f(x), g(x))|x ∈ X}.

Hence if X is locally compact and Hausdorff, then the compact-open topology
on Y X is the topology of uniform convergence on compact sets.

There are also the following important two theorems, a proof of which
may be found in (3), for example.

Theorem 2.1 Let X be a locally compact Hausdorff space, and let Y and
T be Hausdorff spaces. Let f : X × T → Y be a function, and let ft be the
functions defined for each t by ft(x) = f(x, t). Then, f is continuous, is
equivalent to both of the following conditions hold:
i) each ft is continuous; and
ii) the function T ∋ t 7→ ft ∈ Y X carrying t to ft is continuous.
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Theorem 2.2 Let X and T be locally compact Hausdorff spaces, and let Y
be a Hausdorff space. Then there is the homeomorphism

Y X×T ≈

−→
(

Y X
)T

.

Hence by Theorem 1, for a function T → Y X to be continuous, it suffices
that the associated function X × T → Y is continuous. The Theorem 2 is
also known as the exponential law.

Now let X be a locally compact Hausdorff space, and let RX be the set of
continuous real valued functions on X. Let T be a compact Hausdorff space.
We introduce the following notation. Given a function f : T → RX , define
the function f∗ : X × T → R by f∗(x, t) = f(t)(x).

Theorem 2.3 Let X be a locally compact Hausdorff space, let T be a com-
pact metric Hausdorff space, and let M be a dense subset of RX . Then the

set MT is dense in
(

RX
)T

.

Proof. By the exponential law theorem, it suffices to show that the set
S of continuous functions of the form

X × T ∋ (x, t) 7→ f∗(x, t) := f(t)(x) ∈ R

is dense in RX×T , where f ∈ MT .

Let ǫ > 0, and let f ∈
(

RX
)T

. Let

Bǫ(t) = {g ∈ M : sup
x∈K

|f∗(x, t) − g(x)| < ǫ;∀K ⊂ X compact }.

Since f is continuous,

∀ǫ′ > 0,∀t0 ∈ T,∃η(ǫ′) > 0 : |t − t0| < η => sup
K

|f∗(x, t) − f∗(x, t0)| < ǫ′,

for all K ⊂ X compact.
Let gt ∈ Bǫ′(t). We have that

sup
K

|gt(x) − f(x, t0)| < sup
K

|gt(x) − f∗(x, t)| + sup
K

|f∗(x, t) − f∗(x, t0)|

< 2ǫ′.

Hence Bǫ′(t) ∩ B2ǫ′(t) 6= ∅, which implies that B2ǫ′(t) ∩ B2ǫ′(t0) 6= ∅, since
Bǫ′(t) ⊂ B2ǫ′(t). Hence ∀ǫ′ > 0,∀t0 ∈ T,∃η > 0 : dist(t, t0) < η =>
Bǫ′(t) ∩ Bǫ′(t0) 6= ∅.

Consequently, for all ǫ > 0, there exists a continuous map f̂ : T → M
such that ∀t ∈ T, f̂(t) ∈ Bǫ(t). Finally, since T is compact, we have that
supT supK |f̂∗(x, t) − f∗(x, t)| < ǫ, for all compact K ⊂ X.
�
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Corollary 2.4 Let G be a fundamental set in RX , i.e., spanG is dense in

RX . Then the set of continuous maps T → spanG is dense in
(

RX
)T

.

We now move on to the definition of a ridge function field. Let T be
a compact Hausdorff metric space. We define a ridge function field over T
as being a continuous map T → M, where M is the set of ridge function
approximants defined by Equation (4). It is assumed here, and in the sequel
of the paper, that the generator function h in Equation (4) is such that M
is dense in C(Rd). For instance, h may be of sigmoidal form. Under this
assumption, we have, as a corollary of Theorem 3, the following proposition.

Proposition 2.5 Let T and M be as above. Then the set {T → M} of

continuous ridge function fields over T is dense in
(

RX
)T

.

The set of continuous ridge function fields over T will be denoted by MT .
Remark. In the case where M in Theorem 3, or spanG in Corollary 4, is a

linear space, one immediately obtains a characterization of MT . For instance,
consider the case where spanG is the set of polynomials in several variables.
Then MT may be identified with the tensor product C(T )⊗G, providing one
with a practical way of constructing a continuous field of polynomials over
T . Things go differently when M is not a linear space, as will be discussed
in the next section.

3 Parametrization of ridge function fields

Let ζ ∈ MT be a ridge function field. Since T is compact, we may assume,
without loss of generality, that ζ belongs to MT

n , for some integer n, where
Mn is the set of linear combinations of at most n shifted ridge functions. We
are willing to characterize the elements of MT

n , for the purpose of defining
a simple and practical construction method of ridge function fields. Let us
start with some definitions and general points.
Let A be a topological space. We call a set P a parameter space for A if P is
homeomorphic to A, and the homeomorphism ip : P → A will be refered to
as a parametrization for A. We call a set P a weak-parameter space for A if
there exists a continuous surjection ip : P → A, and ip will be refered to as a
weak-parametrization for A. Note that if A admits a weak-parametrization
ip : P → A, then it admits a parametrization if and only if the map ip is open.
In fact, if ip is open, then A is homeomorphic to P/ ∼, the quotient space
with the quotient topology, being the quotient of P given by the equivalence
relation

p1 ∼ p2 iff ip(p1) = ip(p2). (5)
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The set Mn of ridge approximants admits a weak-parametrization. More pre-
cisely, each element of Mn depends on parameters ci, ai, bi, for i = 1, ..., n,
that we shall summarize by a vector θn. Let Θn be the set of allowable values
for θn, i.e., Θn =

∏n
i=1 R×Rd ×R, and let in : Θn → Mn be the continuous

map sending a parameter vector θn to the corresponding ridge approximant
of Mn. The map in is a continuous surjection, i.e., a weak-parametrization
for Mn. Hence a ridge approximant of Mn is constructed by specifying an
element of the weak-parameter space Θn.
We ask if the set MT

n of continuous ridge function fields over T admits a
weak-parametrization. In fact, we are to be faced with the following difficul-
ties. For each continuous ridge function field ζ ∈ MT

n , there exists at least
one vector-valued function ξ : T → Θn such that ζ = in ◦ ξ. Note that a dis-
continuous function ξ : T → Θn may yield a continuous ridge function field
ζ = in ◦ ξ, since in is only surjective. Therefore there exists an appropriate
subset of the set of, eventually discontinuous, functions T → Θn, being a
weak-parameter space for MT

n ; the difficulty resides here in its characteriza-
tion. An alternative approach, for ensuring the continuity of ζ, is to proceed
conversely, by constructing ζ via a continuous parameter map ξ : T → Θn,
i.e., ζ = in ◦ ξ. By doing so, the field ζ is continuous, but we are not sure
to get all of MT

n when ξ varies in C(T ), i.e., it is not sure that the set ΘT
n of

continuous maps T → Θn is a weak-parameter space for MT
n .

In fact, the above difficulties come from the fact that very few is known
about the quotient space Θn/ ∼, though the equivalence relation on Θn has
been pointed out and studied by several authors, mainly in the context of
neural networks. The case where h is the hyperbolic tangent has been stud-
ied in (16)(1), and extended in (9)(10) to the case where h is asymptotically
bounded. In fact, the major concern of those works has been to reduce the
set of allowable values for the parameter vector θn, so as to improve the op-
timization procedure involved in function approximation from a finite data
set. There is also the closely related work of Buhmann and Pinkus, that is
to be found in (4)(5).

We do not pursue in this direction here. Instead, we ask if one may obtain
a dense set of ridge function fields, being built via continuous parameter maps
ξ : T → Θn. More precisely, we ask if

∪n{ζ ∈ MT
n : ζ = in ◦ ξ, ξ ∈ ΘT

n} (6)

is dense in (C(X))T , where we recall that ΘT
n denotes the set of continuous

maps T → Θn. The answer is yes, and we begin by stating the following
proposition.

Proposition 3.1 Let T be a compact metric Hausdorff space, and let G be
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a fundamental set in C(X). Then the set

∪n{f ∈ C(X × T ) : f(x, t) =
n

∑

i=1

fi(t)gi(x); fi ∈ C(X); gi ∈ G} (7)

is dense in C(X × T ).

Lemma 3.2 Let X and T be two locally compact Hausdorff spaces, and let
A be the set spanned by functions of the form f(x)g(t), where f ∈ C(X), and
where g ∈ C(T ). Then A is dense in C(X × T )

Proof. Clearly A is a sub-algebra of C(X × T ) which separates points
and vanishes at no point of X × T . Let h0 be an element of C(X × T ). To
show that A = C(X × T ), it suffices to show that for each compact K of
X × T and each ǫ > 0, the set

BK,ǫ = {h ∈ C(X × T ) : sup
(x,t)∈K

|h(x, t) − h0(x, t)| < ǫ}

has a non-empty intersection with A. Let K1 and K2 be compact subsets of
respectively X and T , such that K ⊂ K1 × K2. The set {fK1×K2

: f ∈ A}
of restrictions of elements of A to K1 × K2 is still an algebra containing
constants and vanishing at no point, and is therefore dense in C(K1×K2) by
the Stone-Weierstrass theorem. Consequently A intersects BK1×K2,ǫ. Noting
that BK1×K2,ǫ ⊂ BK,ǫ, we have also that A intersects BK,ǫ. �

Proof of Proposition 6. The set defined by Equation (7) contains the
set of functions of the form f(t)

∑n
i=1 gi(x), which is easily seen to be dense

in C(X × T ) by Lemma 7.
�

Corollary 3.3 Let G be fundamental in C(X), and let T be a compact metric
Hausdorff space. Then the set of function fields ζ : T → C(X) such that

ζ∗(x, t) =
n

∑

i=1

ci(t)gi(x), (8)

for some integer n, ci ∈ C(T ), and gi ∈ G, is dense in (C(X))T .

Proof. By Theorem 2, there is the homeomorphism C(X × T )
≈

−→
(C(X))T .
�

Finally, we arrive at the following two propositions. Recall that the gen-
erator function h is such that M is dense in C(Rd).
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Proposition 3.4 The set of ridge function fields ζ : T → M such that

ζ∗(x, t) =
n

∑

i=1

ci(t)h(aix + bi), (9)

for some integer n, ci ∈ C(T ), ai ∈ Rd, and bi ∈ R, is dense in (C(X))T .

Proof. Take G = {h̃ : Rd ∋ x 7→ h(ax + b) ∈ R; a ∈ Rd; b ∈ R}, i.e.,
M = span G, and apply Corollary 8.
�

Proposition 3.5 The set of ridge function fields ζ : T → M such that

ζ∗(x, t) =
n

∑

i=1

ci(t)h (ai(t)x + bi(t)) , (10)

for some integer n, ci ∈ C(T ), ai ∈ C(T,Rd), and bi ∈ C(T ), is dense in
(C(X))T .

Proof. The set of ridge function fields satisfying (9) is included in the
set of ridge function fields satisfying (10).
�

In the above proposition, bi and ci vary in all of C(T ), and ai varies in all
of C(T,Rd). Now given subsets Fa ⊂ C(T,Rd), Fb ⊂ C(T ), and Fc ⊂ C(T ),
we consider the set of ridge function fields satisfying (10), where ci ∈ Fc,
ai ∈ Fa, and bi ∈ Fb. In the following proposition, sufficient conditions on
Fa, Fb, and Fc, are given, for such a set of ridge function fields to be dense
in (C(X))T .

Proposition 3.6 Let Fc and Fb be subsets of C(T ), and let Fa be a subset
of C(T,Rd). Let R (Fc,Fa,Fb) be the set of ridge function fields ζ : T → M
such that

ζ∗(x, t) =
n

∑

i=1

ci(t)h (ai(t)x + bi(t)) , (11)

for some integer n, ci ∈ Fc, ai ∈ Fa, and bi ∈ Fb. For R (Fc,Fa,Fb) to
be dense in (C(X))T , it is sufficient that Fc and Fa contain the constant
functions, and that Fb contains the affine functions.

Proof. Let A be the set of approximants of the ridge form over X × T ,
i.e., A is spanned by functions of the form

f(x, t) =
n

∑

i=1

cih
(

aix + ãit + b̃i

)

, (12)

8



where ci, b̃i ∈ R, ai ∈ Rd, and ãi ∈ Rdim(T ). Let

R∗(Fc,Fa,Fb) = {ζ∗ : ζ ∈ R(Fc,Fa,Fb)}. (13)

The density of R (Fc,Fa,Fb) in (C(X))T comes from the inclusion A ⊂
R∗ (Fc,Fa,Fb), from the density of A in C(X ×T ), and from the homeomor-

phism C(X × T )
≈

→ (C(X))T .
�

Of particular interest is the ridge function field of the special kind de-
scribed below. Assume T is a compact subset of Rp. Let {t1, ...tkp} be kp

points of Rp, being the kp vertices of a regular grid of Rp, such that T is
included in the smallest p-dimensional cube Ξ containing all of the ti. Hence
T ⊂ Ξ, and ti ∈ Ξ for all i = 1, ..., kp.
Let γ1, ..., γkp be kp real numbers. Let f be a continuous and piecewise-
differentiable function on Ξ such that f(ti) = γi for all i = 1, ..., kp, and
defined for all t ∈ Ξ such that t 6= ti∀i by

f(t) =
2p

∑

j=1

αj(t)f(tij). (14)

In this equation, the tij are the 2p immediate neighbours of t on the grid,
i.e., they are the vertices of the p-cube such that t belongs to its interior,
and the coefficients αj(t) are the coefficients of the standard p-dimensional
interpolation procedure on the interior of a p-cube. We shall denote by Fk

the set of all such maps. Note that Fk ⊂ Fk+1. The construction of these
maps is illsutrated on Fig. (1), in the case where p = 2.
Let R(Fk) be the set of ridge function fields ζ : T → M such that ζ∗ is of
the form

ζ∗(x, t) =
n

∑

i=1

c̃i(t)h
(

ãi(t)x + b̃i(t)
)

, (15)

where the ãi, b̃i, c̃i are restrictions to T of functions ai, bi, ci, defined on Ξ,
and such that bi, ci, and the components aj

i , j = 1, ..., d of ai belong to Fk.
As above, x ∈ X ⊂ Rd, ai ∈ C(T,Rd), bi ∈ C(T ), and ci ∈ C(T ).
From a practical point of view, the sets R(Fk) are especially interesting, since
their elements may be constructed in a rather simple way. Furthermore, by
Proposition 11, the sets R(Fk) are dense in (C(X))T , for all k ≥ 1, which
illustrates the significance of the above results.

Concluding Remarks. So far we have given density results on sets of
ridge function fields. It would be interesting to pursue this work by inves-
tigating the rate of approximation of some class of function fields, by ridge
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function fields. One might expect an interplay between the number n of ridge
functions and the complexity of the parameter map. For instance, in the
above field, constructed on a regular grid, it would be interesting to examine
the dependence of the approximation rate on n, and on the number of points
in the grid. Another research direction that would be worth exploring is the
geometry and topology of sets of ridge function based approximants. We
have seen that this is the major source of problems in getting a parametriza-
tion, or weak-parametrization, of sets of continuous ridge function fields.

γ1

γ2 γ3

t1 ,

t2 , t3 ,

γ4t4 ,

A4 A1

A3 A2

t, g(t)
T

Figure 1: Construction of a real valued piecewise-differentiable map f
by multilinear interpolation. In this picture, T is a 2-dimensional ellip-
soidal domain covered by a regular 5x3 grid. The value f(t) of f at
some point t in the square with corners located at t1, ..., t4 is defined by
f(t) =

∑4
i=1

Ai

A1+A2+A3+A4

γi, where the Ai’s are the areas of the rectangles
defined on the picture. Note that the Ai depend on t.
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