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[1] The fine particle abundance, i.e., particle matter (PM) concentration, is one of the
indicators of air quality and is therefore subject to ground-based measurements.
Complementary satellite aerosol remote sensing techniques provide one with maps of the
aerosol optical thickness (AOT), which is sensitive to particle abundance. This paper
investigates the problem of retrieving the PM concentration from the AOT, both on daily
average values, on the basis of a large data set where data from the air quality networks
are combined with ground-based measurements of the AOTs. It is found that a linear
model fails at explaining the data well but that the performance may be significantly
improved when such a linear relationship is conditioned on auxiliary parameters, mainly
meteorological variables. The proposed model is expressed as an additive varying
coefficient model (AVCM), which is defined as a linear model where the coefficients are
additive functions of the auxiliary parameters. The model is represented using penalized
smoothing splines, allowing for a proper control of the overall number of degrees of
freedom via multiple smoothness parameters selection. The methodology is applied to data
collected around Lille (France). The PM10 concentrations are retrieved with an average
uncertainty of less than 20%, leading to a correlation coefficient of 0.87 between fitted and
expected PM10.
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1. Introduction

[2] Air quality is of major concern and the relevant
legislation is changing rapidly. The fine particle abundance
is one of the indicators of air quality and is therefore subject
to an official norm: PM10 and PM2.5 are the mass per unit
volume corresponding to Particulate Matter (PM) of diam-
eter respectively less than 10 mm and 2.5 mm [World Health
Organization (WHO), 2000]. The size and composition of
the ambient PM not only depend on the emission process,
but also, and particularly for the finer fractions, on the
atmospheric processes that the particles go through after
emission. The particle mass is usually found in two size-
related modes [Van Dingenen et al., 2004; Putaud et al.,
2004]. The fine mode particles, up to around 1 mm,
generally originate from high-temperature processes and/
or gas-to-particle formation processes in the atmosphere;
these particles carry inorganic compounds (such as sul-
phates, nitrates, and elemental carbon) and organic com-
pounds, including semivolatile components. Mechanical

processes such as erosion, corrosion and material abrasion
give rise to coarser particles, usually larger than 1 mm and
called coarse mode particles. These particles carry, e.g., soil
components and sea spray. Another fraction, the ultra fine
particles (UFP), in size below 0.1 mm, is better character-
ized by the number concentration (number of particles per
cm3), because despite their large number they contribute
only little to the particulate mass. Large and very small
particles have a limited atmospheric residence time due
to deposition or coagulation. Particles in the size range
between approximately 0.1 and a few mm remain much
longer in the atmosphere (typically several days to one week)
and can consequently be transported over long distances
(1000 or more kilometers). Particles are emitted directly
from ‘‘primary’’ sources and are also formed in the atmo-
sphere by reaction of precursor gases (‘‘secondary sources’’).
The main precursor gases are SO2, NOx, VOC and NH3.
Other common distinctions are natural/anthropogenic sour-
ces and combustion/noncombustion sources of aerosols
[D’Almeida et al., 1991].
[3] When inhaled, the larger particles contained in the

PM10 size fraction reach the upper part of the lung. The
smaller particles of this size fraction (in particular PM2.5 and
PM10) penetrate more deeply into the lung and reach the
alveolar region. A large body of scientific evidence has
emerged that has strengthened the link between ambient PM
exposure and health effects [Wilson and Sprengler, 1996].
New analyses have shown death being advanced by at least
a few months on population average, at current PM con-
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centrations in Europe, for causes such as cardiovascular and
lung disease. Furthermore, there are robust associations
between ambient PM and increases in lower respiratory
symptoms and reduced lung function in children, and
chronic obstructive pulmonary disease and reduced lung
function in adults [Wyzga, 2002]. There is no evidence for a
threshold below which ambient PM has no effect on health.
In its recent review, the World Health Organization (WHO)
has concluded that there is a causal relationship between
PM exposure and health effects [WHO, 2000]. However, it
has not been possible to establish a causal relationship
between PM-related health effects and one single PM
component. This is in spite of intensive research roughly
over the last decade. Nevertheless, there is strong evidence
to conclude that fine particles, usually measured as PM2.5 in
health effects studies, are more hazardous than larger ones
[Schwartz et al., 1996]. This does not imply that the coarse
fraction of PM10 is innocuous. PM characteristics found to
contribute to toxicity include: metal content, presence of
polycyclic aromatic hydrocarbons and other organic com-
ponents, endotoxin content and small (less than 2.5 mm) and
extremely small (less than 0.1 mm) size. Epidemiological
studies suggest that a number of emission sources are
associated with health effects, especially motor vehicles
and coal combustion. Toxicological studies show that par-
ticles originating from internal combustion engines, coal
burning, residual oil combustion and wood burning have
strong inflammatory potential.
[4] European directives indicate for air quality the objec-

tives to be reached at short and medium terms. For example,
the European Community (EC) directive imposes an upper
limit on PM10 of 50 mg/m3, which cannot be overpassed
more than 35 days a year [European Union, 1999]. This
recommendation is effective since 1 January 2005. The
norm will become even stricter in 2010 with a maximum
of seven days. In order to respect this air quality regulation,
air samples are analyzed in ground-based networks that are
providing one with PM measurements.
[5] As an alternative to gravimetric measurements, one

direction is to use the optical properties of the aerosols to
estimate their abundance. The presence of more aerosols
reduces the meteorological visibility. A radiometer at the
top of the atmosphere (TOA) measures the solar direct
irradiance Es (in W/m2/mm) at different wavelengths. If
the radiometer is installed at the ground level, Es is reduced
by the scattering and absorption processes through the
atmospheric path, so that the solar irradiance E at ground
level is expressed as:

E ¼ Es:e
�mt : ð1Þ

[6] In this equation m is the air mass defined by m = 1/
cos (qs), where qs denotes the solar zenith angle. The air
mass describes the length of the atmospheric path and the
key parameter is the optical thickness t. The contribution of
the molecules is well known and when removed, we get the
aerosol optical thickness (AOT) ta.
[7] Earth Observations are interpreted at different levels.

Level 2 are geophysical products and AOTs are provided
since decades over ocean [Takayama and Takashima, 1986;
Gordon and Wang, 1994] and more recently over land

[Kaufman et al., 1997; Santer et al., 1999]. Earth Observa-
tions offer a better spatial coverage and provide a cost-
effective approach than ground-based measurements. The
retrieving of particulate matter from optical measurements
may be considered as a supplemental source of information,
and particularly over water which is of concern is the
understanding of particle transportation.
[8] In theory, the two quantities may be associated under

the assumptions that (1) the aerosols are spherical, (2) the
aerosols optical properties are identical in the atmospheric
column, (3) the vertical distribution of the total abundance is
known, (4) the chemical composition and density of the
aerosols are known, and (5) the normalized particle size
distribution is known. Assumption 1 simplifies the optical
theory; assumption 3 allows the optical characterization of
the atmospheric column into PM at the ground level, and
assumption 4 allows one to determine the refractive index
and to transform a number of particle into a mass.
[9] Let us now work out this association. Denote by n(r)

the size distribution, and by n(r)dr (in m�3) the number of
particles of radius between r and r + dr. The size distribu-
tion also depends on the altitude z (in m). At the ground
level (z = 0), we now introduce the size distribution n0(r),
normalized to one particle:

n r; 0ð Þ ¼ N0no rð Þ; ð2Þ

where N0 is the number of particles in one m3 (no unit).
no(r)dr is in m�3. Note by assumption 5, n0(r) is known.
[10] By assumption 3, the vertical distribution is known.

Suppose it is of the exponential form:

n r; zð Þ ¼ n r; 0ð Þ exp � z

Ha

� �
; ð3Þ

where Ha is the aerosols vertical scale height (m).
[11] For spherical particles, the Mie theory applies and we

can compute the extinction coefficient sa (in m�1)
corresponding to the normalized size distribution n0(r) and
to a particle refractive index. The vertical integration of sa
corresponds to ta, and we get:

ta ¼ NoHasa; ð4Þ

[12] For the normalized size distribution, the mass con-
centration mo, of particles of radius less than X/2 is
expressed as:

m0 ¼
4

3
pd
Z x=2

0

r3no rð Þdr; ð5Þ

where d is the particle density (mg.m�3), supposed to be
constant with r. Finally, from equations (4) and (5), the
association of the AOT and PM is obtain as the product of
N0 and m0:

PMx ¼
tamo

Hasa

: ð6Þ

[13] Of course, through equation (6), we can convert ta at
any wavelength. This relation is linear for a given vertical
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distribution and a given aerosol model. In practice, one
aerosol model may be selected from measurements of ta at
several wavelengths, but one a raw way. The vertical
distribution can occasionally be measured at one place
using a LIDAR or during aircraft campaigns, but certainly
not on an operational basis.
[14] In other words, the use of equation (6) for retrieving

PM is not straightforward. Other approaches attempt to
directly relate PM and AOT. Actually, there exist some
indications that PM10 are proportional to the AOT at
550 nm, further denoted by ta

550. Chu et al. [2003] linearly
correlate daily averaged values of PM10 and ta550 from
AERONET with a reasonable success, on the basis of
29 points collected during a 3 months period. AERONET
is an optical ground-based aerosol monitoring network
[Holben et al., 1998]. Wang and Christopher [2003] do
the same intercomparison but between PM2.5 measurements
and satellite-derived AOT. More precisely, mean hourly
PM2.5, measured with the Tapered-Element Oscillating
Microbalance (TEOM, estimated error of ±1.5 mg.m�3),
and ta

550 derived from measurements with the Moderate
Resolution Imaging SpectroRadiometer (MODIS, level 3
product on 10*10 km2) are considered, and a linear correlation
of R = 0.7 is reported on 1095 points.
[15] Another approach consists in assimilating the AOT

derived from a satellite in an aerodynamic model which
outputs PM. Sarigiannis et al. [2003] use satellite-derived
determination of PM10 concentration to determine the
associated risk on public health using merging data tech-
niques with meteorological data and pollutant dispersion.
Liu et al. [2004] propose annual mean ground-level PM2.5

concentration maps using the Multiangle Imaging Spec-
troradiometer (MISR) AOT over the continuous United
States.

[16] In this paper, the relationship between AOT and PM
is investigated on the basis of a large set of data collected
during four consecutive years in the region of Lille (France).
This data is described in section 2, together with several
preprocessing operations. In section 3, evidence that a direct
correlation or a linear model is not sufficient for explaining
the data is given. These results motivate the introduction of
auxiliary parameters, which is investigated in section 4. A
model is proposed in the form of an additive varying
coefficient model (AVCM), that is fitted semiparametrically
using penalized smoothing splines, and under the assump-
tion of additivity of the components. The theoretical materi-
als and details concerning the fitting procedure are
postponed in Appendix A, at the end of this paper, while
in section 4, the focus is on the methodology and the results.
The application to a second site is also investigated in this
section. Finally in section 5, a summary of the findings is
given, as well as perspectives on future work.

2. Database

[17] The European project EXPER/PF (EXposition des
populations de l’Eurorégion aux polluants atmosphériques:
le cas des poussières fines) is a project for the development
and the promotion of a cross-border (between France and
Belgium) database on atmospheric particulate matter (more
information may be found on the Web site http://www.
appanpc-asso.org/experpf/). As part of this project, a large
database of PM10 records from air quality networks has
been built up. For the purpose of this work, we added
optical ground measurements, and auxiliary meteorological
parameters. The data collection processes are described in
the next subsections, as well as several preprocessing steps
applied on these data.

2.1. Particulate Matter Measurements

[18] The PM records are obtained from 3 air quality
networks, namely AREMA and OPALAIR deployed in
France, and VMM deployed in Belgium. The locations of
the PM stations are given in Figure 1 which displays the
project area comprised between 50�300N and 53�300N and
1�W and 4�E. Belgium stations (in red) are located in rural
and urban areas, and French stations are close to the cities of
Lille (in blue) and Dunkerque (in green). PM10 are mea-
sured using the TEOM instrument. What is important to say
is that these measurements are performed on dry aerosols.
[19] The instruments are contained in stations, either

mobile or fixed, which are equipped with a stainless
sampling head situated on the roof. The manifold is consti-
tuted of a Teflon or glass cylinder protected from the rain by
a metallic cover. Several short lines are connected on the
manifold until each monitor. The air is aspired in the
principal line by a high-volume pump. The analyzed air is
the one which is situated around the station. The pumping
of air is a continuous process. Each monitor has its own
pump and samples the necessary volume of air from the
manifold. The particles are pumped through a special head,
which selects those whose diameter is less than 10 mm. The
larger particles impact on the impaction plate and stop. The
smaller ones are carried by the flow in the monitor. To
determine particles of diameter less than 2.5 mm a sharp cut
cyclone is added to modify the flow pattern of the particles

Figure 1. EXPER/PF zone with main cities (white dots)
and PM monitoring stations of the air quality networks
(colored dots).
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according to their size. The PM monitors are calibrated
using filters with a well-known mass, and the flow is
regularly checked.
[20] The PM10 are acquired every hour, and the EXPER/

PF database gives access to measurements from all stations,
collected during years 1999 to 2002.

2.2. Aerosol Optical Thickness Measurements

[21] The AOT ground measurements come from the
AERONET network. The AERONET sites falling into the
EXPER/PF area (see Figure 1) are located in the cities of
Lille (50�360N, 3�080E), Oostende (51�130N, 2�550E) and
Dunkerque (51�060N, 2�610E). AERONET data are pro-
vided through the Web site http://aeronet.gsfc.nasa.gov.
For the study, level 1.5 AERONET measurements are
used; they consist of AOTs at 440, 670, and 870 nm.
These values are retrieved from direct Sun measurements
(following equation (1)) at least every 15 min under clear
sky conditions, and the data are automatically cloud
screened [Smirnov et al., 2000]. The accuracy of AOT
measurements is between 0.01 and 0.02 in AOT measure-
ment for an air mass equal to 1 [Dubovik et al., 2000].

2.3. Data Preprocessing

[22] Let ta = (ta
440, ta

670, ta
870)T be the vector of aerosol

optical thicknesses at 440, 670, and 870 nm. The dimension
of the ta vectors has been reduced from three to two by
performing a Principal Component Analysis (PCA) [see,
e.g., Fedorov et al., 2003]. In fact, the PCA has been
applied to the logarithm of ta, because (1) the logarithm
of the aerosol optical thickness presents an almost linear
spectral dependence (in terms of the logarithm of the
wavelength) and (2) PCA is a linear technique. The com-
ponents of the first two eigenvectors u1 and u2 of the
covariance matrix of log ta are given by Table 1. The
projections of log ta on u1 and u2 will be denoted by
p1ta and p2ta, respectively, i.e., we have

pita ¼ ui1 log t
440
a þ ui2 log t

670
a þ ui3 log t

870
a ; ð7Þ

for i = 1, 2. From the coefficients in Table 1, it may be
seen that p1ta corresponds approximately to the mean
level of the logarithm of the aerosol optical thickness, and
that p2ta is comparable to the difference of the logarithm
of ta

440 and ta870. So p2ta is almost proportional to the
average slope of log ta, considered as a function of the
wavelength.
[23] Concerning the PM10 variable, a logarithm trans-

formation has been applied. This is motivated by the fact
that the distribution of PM10 is highly skewed, and a log-
transform allows to almost symmetrize the shape of its
distribution. Variables transformations have a long history
in the field of statistics [see, e.g., Atkinson, 1985; Carroll
and Ruppert, 1988].The logarithm of the PM10 will be
denoted by y.

3. Preliminary Results: Linear Approaches

3.1. Direct Correlation

[24] As mentioned in the Introduction, there exists some
indications that PM and AOT may be related linearly.
Because we have access to this large EXPER/PF database,

we first investigate this opportunity to directly correlate
AOT at 550 nm and PM. This comparison has been done for
the spatial average of the five PM stations located in the
Lille area on a daily basis. Results are reported in Figure 2
for the AOT station located in Lille, and it may be seen that
the plot is highly scattered.
[25] In fact, this was quite expected because most of the

driven parameters (size distribution, vertical profile, . . .) are
ignored. The additional information that may be used is the
Angstrom coefficient a at two wavelengths l and l0,
defined as follows:

ta lð Þ
ta l0ð Þ ¼

l
l0

� ��
; ð8Þ

which thus may be obtained from two measurements of
AOT at l and l0. The Angstrom coefficient may be
compared to p2ta. The Angstroem coefficient is an
important parameter because it can be directly associated
to the size distribution when expressed in terms of the Junge
power law [Van de Hulst, 1957].

3.2. Linear Model

[26] The Angstrom coefficient in equation (8) corre-
sponds to the slope of the line giving the logarithm of the
AOT versus the logarithm of the wavelength. In the present
case, the AOT is sampled at three wavelengths, and the
empirical Angstrom coefficient is estimated by averaging
the slopes between two samples. Thus the empirical Ang-
strom coefficient is none other than a linear combination of
the logarithm of the AOTs. Under the assumption that
equation (8) holds strictly, the triplet(ta440, ta670, ta870)T
may be represented without any loss by a pair composed
of (1) one AOT at a given wavelength, ta

440 say, and (2) the
Angstrom coefficient. In practice however, the measure-
ments may slightly deviate from the model in equation (8)
for various reasons, including experimental noise, so that a
better statistical representation (in terms of explained devi-
ance) of the measured triplet is provided by the pair (p1ta,
p2ta) of principal components. This pair also has the
advantage over a pair of the form (ta

440, a) to have
uncorrelated components. Nonetheless, the two pairs may
be considered as almost equivalent in the sense that they
allow for an approximate, yet accurate, reconstruction of the
measured triplet.
[27] One approach for improving the correlation is to use

the two pieces of information, and to express y as a linear
model in p1ta and p2ta, i.e., as:

y ¼ a0 þ a1p1ta þ a2p2ta; ð9Þ

where a0, a1, and a2 are scalar parameters. A model of this
form has been adjusted on the data set (composed of

Table 1. Components of the First Two Eigenvectors u1 and u2 of

the Covariance Matrix of log ta

u1 u2

0.513 0.781
0.596 �0.028
0.617 �0.623
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724 measurements points; see details in the next section) via
a standard mean square fitting procedure. Performance
statistics are reported in Table 2, which gives the empirical
mean and standard deviation of the errors, together with the
squared correlation coefficient between fitted and expected
log PM10. Both are daily averaged values. As shown in this
table, the standard deviation of the residuals is equal to
about 0.35. Note that since the mean of the residuals is null,
the standard deviation of the residuals is equal to the root
mean squared error in natural logarithm of the model, which
in turn corresponds, up to a second-order term, to the root
mean squared relative error of the model. Thus PM10

concentrations are retrieved by this linear model with an
average uncertainty of 35%. The squared correlation
coefficient between fitted and expected log PM10 is equal
to 0.269, so only 27% of the deviance is explained by the
model. As expected, the introduction of an additional
variable slightly improves the correlation but at a poor level
(compare Figure 2 with Figure 3).
[28] So if there are some indications in the literature that a

linear relationship may hold, it is found here that linearity
can no longer be assumed, since models of this form fail at
explaining accurately the recorded data. There may be
several possible reasons for this, including the incorrectness
of the linearity assumption itself. On the other hand, the
general knowledge we have about aerosols conducts to
associate aerosol characteristics to simple generic parame-

ters. For instance, the wind direction and speed is a good
indicator of the nature of the aerosols. In the region of the
study, there exist two dominant wind directions: when the
wind blows from S-W, maritime aerosols are expected,
while N-E wind directions correspond to continental aero-
sol. Another interesting parameter is the date, which allows
one to trace seasonal phenomena, related to the height of the
mixing layer, the air relative humidity, . . .. Consequently,
the linearity assumption is not necessarily inappropriate, but
may need to be conditioned on outcomes of several auxil-
iary parameters. This is the general idea developed in the
next section, where auxiliary parameters, namely several
meteorological variables and the Julian date, are involved in
the retrieval of PM from AOTs. These auxiliary parameters
are considered as modifying variables, and the proposed

Figure 2. Direct relation ship between the aerosol optical thickness at 550 nm and the PM for the Lille
area.

Table 2. Performance of the Models: Mean and Standard

Deviation s(e) of the Residuals and Squared Correlation

Coefficient R2 Between Fitted and Expected PM10
a

Model Mean s(e) R2

Direct 0.000 0.348 0.269
AVCM 1 0.000 0.199 0.758
AVCM 2 0.000 0.211 0.727

a Direct corresponds to the direct association between AOT at 550 nm as
reported in Figure 2. The complete AVCM is denoted by AVCM 1, and the
AVCM with dropped terms is denoted by AVCM 2.
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model is expressed in the form of a varying coefficient
model.

4. Retrieving With an Additive Varying
Coefficient Model (AVCM)

4.1. Auxiliary Meteorological Parameters

[29] Ancillary meteorological parameters are provided by
the National Center for Environmental Prediction (NCEP)
through the Distributed Active Archive Center (DAAC on
http://daac.gsfc.nasa.gov). The different ancillary data are
zonal and meridional wind speed components (m.s�1),
surface pressure (millibars), relative humidity (%) and
precipitable water (kg.m�2). The data is available every
6 hours on a global scale with a resolution of 1�. The
zonal wind speed is defined as the west-to-east component
of the wind vector (counted positive eastward), and the
meridional wind speed is defined as the south-to-north
wind speed (counted positive northward). The meteorolog-
ical values at AERONET sites are obtained by linear
interpolation on the 1� by 1� grid of the NCEP data.
[30] The data described above and collected over years

1999 to 2002 have been merged into a data set used to fit a
semiparametric AVCM. In this data set, each sample is
composed of the daily average of (1) the vector ta = (ta

440,
ta
670, ta

870)T of aerosol optical thicknesses at 440, 670, and
870 nm, (2) the wind vector, (3) the pressure, (4) the relative
humidity, (5) the precipitable water, and (6) the PM10,

spatially averaged over the five measurement stations. Note
that the local variation of PMs is smoothed by spatial
averaging. The time range of this data set corresponds to
1366 consecutive days, with missing data in the time series
of aerosol optical thicknesses, due to bad sky conditions.
After removing these missing data, we obtained a data set
composed of 724 simultaneous occurrences of aerosol
optical thicknesses, PM10, and meteorological variables,
on a daily scale. The wind vector, the pressure, the relative
humidity, and the precipitable water, will be denoted by xw,
xp, xh, and xwv, respectively. Since the measurements have
been collected over time, the data is expected to be subject
to some time-dependent effects, and an additional variable,
further denoted by xd, that counts the Julian day of the
measurement is introduced. With these notations, the data set
used to fit the statistical model is composed of 724 occur-
rences of p1ta, p

2ta, xw, xp, xh, xwv, xd, and y. Another
empirical model has been developed by Liu et al. [2005] to
retrieve PM2.5 from AOT and auxiliary data. The main
differences of this model are the introduction of the planetary
boundary layer as a parameter of the model and the use of
regression technique to fit the data. Overall, this model
explained 48% of the variability in daily PM2.5.

4.2. Model Characteristics

[31] To explain the data described above, we consider a
varying coefficient model [Hastie and Tibshirani, 1993]
where the logarithm of PM10 is related linearly to the

Figure 3. Fitted versus expected PM10 around Lille, with a 45� line added, as obtained with the linear
model of equation (10).
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projections of the logarithm of the aerosol optical thick-
nesses, and where the coefficients of the linear relationship
are allowed to vary over time and with the meteorological
variables, i.e., we have:

y ¼ f0 þ f1p1ta þ f2p2ta; ð10Þ

where f0, f1, and f2 are functions of the variables, xw, xp,
xh, xwv , and xd. However, this model still is very general,
since the unspecified functions f0, f1, and f2 depend on a
large number of variables; 6 variables, indeed. Conse-
quently it may be difficult to fit, and may not differ much
from a multivariate regression model, which would
diminish the interpretability of the modifying functions
f0, f1, and f2.
[32] So we restrict the above varying coefficient model by

assuming that the functions f0, f1, and f2 are additive, i.e., for
i = 0, 1, 2, we let:

fi xw; xp; xh; xwv; xd
� �

¼ f wi xwð Þ þ f
p
i xp
� �

þ f hi xhð Þ þ f wvi xwvð Þ þ f di xdð Þ; ð11Þ

where, fi
w, fi

p, fi
h, fi

wv, and fi
d are unknown functions, either

univariate (case of the pressure, relative humidity, water
vapor, and day components) or bivariate (case of the wind
component). The additivity assumption has proved useful in
a variety of multivariate modeling situations, leading to

so-called additive models [Friedman and Stuetzle, 1981;
Hastie and Tibshirani, 1990; Ruppert et al., 2003].
[33] The functions fi

w, fi
p, fi

h, fi
wv, and fi

d constitute the
free parameters of the model and have to be estimated from
the data. It is generally desirable that their shapes remain
largely unspecified, to provide enough flexibility, while
controlling the resulting number of degrees of freedom, to
avoid overfitting. This may be achieved via penalized
smoothing splines. Basically, a spline function is composed
of polynomial pieces that are connected at some points,
called knots. The theoretical materials on fitting this model
are postponed to Appendix A. Here, the focus is on the
results, i.e., on the shapes of these functions, more than on
the process by which they are constructed.

4.3. Results

[34] One AVCM, further denoted by AVCM1, has been
adjusted on the data described above. Performance statistics
are reported in Table 2, where the improvement brought by
AVCM1 over the linear model may be noticed. The mean of
the residuals is negligible, and the standard deviation of the
residuals is slightly improved to about 0.20, but the R2 is
increased to 0.758. Hence above 75% of the deviance is
explained by the model, and this corresponds to a correla-
tion coefficient of 0.87. Fitted versus expected PM10 are
plotted on Figure 4 using a decimal logarithmic scale, for
convenience.

Figure 4. Fitted versus expected PM10 around Lille as obtained with AVCM1.
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Figure 5. Intercept components of the AVCM1 fitted on Lille data.
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[35] The terms of the three components (i.e., the functions
f0, f1, and f2,) of AVCM1 are displayed in Figure 5 (intercept
component), Figure 6 (component on p1ta), and Figure 7
(component on p2ta). Since each term in a component is

designed to sum up to zero over the observations, these
curves are to be interpreted as variations around the mean
level. In the three components, the influence of the wind
appears to be directional. In the intercept component, it may

Figure 6. p1ta-component of the AVCM1 fitted on Lille data.
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Figure 7. p2ta -component of the AVCM1 fitted on Lille data.
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be seen that the PM10 decreases with increasing relative
humidity, and increases with increasing pressure and water
vapor. Time-dependent effects are revealed by the terms
corresponding to the day number.
[36] The curves in Figures 6 and 7 suggest that some

variables have few to almost no influence on the coeffi-
cients related to p1ta and p2ta, and that their associated
terms may safely be dropped. This is the case for all but the
wind term in the component on p1ta (see Figure 6), and for
all but the wind and the Day Number terms in the compo-
nent on p2ta (see Figure 7). So we designed a similar
AVCM, further denoted by AVCM2, with these terms
removed, and we obtained almost identical results. The
performance statistics take comparable values; see Table 2
and the scatterplot of fitted versus expected PM10 in
Figure 8. The components of this second AVCM are
displayed in Figures 9–11, and present shapes being very
similar to the ones in Figures 5–7.
[37] Another illustration of the results is given in

Figure 12 through the correlation between AOT and PM10

(in a log scale) at different times of the year. We now have a
relationship between PM10 and the AOTs which depends
on auxiliary parameters. For the AMCV2, it is the date and
the wind speed vector. In order to investigate the role of one
specific parameter, we set all the others to constant values.
The two plots are for a = �1 and a = 0. Note that only two
significant parameters are derived from the three AOTs via
the PCA. AOT at 440 nm is in x axis, while the relation is

plotted for these two values of a. The date is the parameter
we selected to illustrate the relation PM10 versus AOT at
440 nm. This relation is almost linear. The wind speed is set
to zero. The variability induced by date includes different
physical processes related to the following:
[38] 1. The vertical distribution of the aerosols impacts on

the conversion of the AOT (representative of the atmo-
spheric column) into PM (measured at ground level). The
altitude of the mixing layer is lower in winter; so for a given
AOT and a given aerosol model, the PM value is expected
to be larger in winter than in summer, which is in accor-
dance with the results in Figure 12.
[39] 2. The air is drier in winter compared to summer.

That impact on the particle size but this effect is partially
described in a.
[40] These two effects are also used by Eck et al. [2005]

in an attempt to correlate PM10 and AOTs. Note that the
date component presents some wiggliness (with intraseaso-
nal variability) that is difficult to interpret. Indeed the date
variability is likely to be mostly traced in the meteorological
parameters. So under the assumption of validity of the
AVCM, the date component represents a time-dependent
modifying effect on the log linear PM-AOT relationship that
cannot be explained from the meteorological parameter
under the shape constraint, namely that of additivity. Thus
the date component may be thought of as a residual
component that traces over time a variability due to com-
plex mechanisms, including the physical process described

Figure 8. Fitted versus expected PM for the AVCM2 with dropped terms and fitted on Lille data.
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Figure 9. Intercept component of the AVCM2 with dropped terms fitted on Lille data.
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above, that are not characterized by meteorological varia-
bles only. By essence, the physical interpretation of the
AVCM is difficult. If it is not the case, then the only two
auxiliary parameters we isolated may directly explain the
PM10 and AOT correlation through simple physical law.

4.4. Application to a Second Site

[41] We applied the two AVCM to a set of data collected
on a second site during year 2003. The PM10 measurements
were recorded in the city of Veurnes. For the aerosol optical
thicknesses, as there is no station in the city of Veurnes, we
computed the averages of the optical measurements from
the two closest available stations, namely those located in
the cities of Oostende and of Dunkerque. They are both
about 20 km from the city of Veurnes. This second data set

is composed of 82 samples. Retrieved versus expected
PM10 are shown in Figure 13 for the AVCM2 model; but
results with the AVCM1 are very similar. As expected, the
correlation between retrieved and expected values is some-
what worsened. Retrieved values are weakly negatively
biased, the average of the error (in natural logarithm) being
on the order of minus up to two percents. The standard
deviation of the error is on the order of 35%, and the R2

between retrieved and expected values is equal to 30%.
These statistics are summarized in Table 3.
[42] To assess the validity of the AVCM approach, one

AVCM of the type defined above has been fitted to this data.
Because of the lower number of data points, some compo-
nents are removed and the model is expressed as in
equations (10) and (11); simplified with f1 and f 2 as scalars.
The empirical mean and standard deviation of the residuals
are equal to 0 and 0.2249, respectively, and the squared
correlation between fitted and expected PM is equal to
0.6992. These results are also plotted in Figure 14.
[43] These results reveal the importance of the localiza-

tion, since the performance is decreased by a factor 2
when the AVCM adjusted on Lille data is applied on
Veurnes data. However, these results suggest that the
AVCM approach is reproducible in other locations provid-
ed that a sufficiently large data set has been set up, since
the AVCM adjusted on Veurnes data explains about 70%
of the deviance (75% for AVCM1 on Lille data). Thus
there is a slight degradation of about 5% in terms of the
explained deviance, which may be due to several factors.
First, it is well known than PM measurements have to be
corrected, and that the corrective factor varies from one
country to one another, as it is the case between Belgium
and France. Therefore, if the AOT are quite universal, the
method developed on the ‘‘French’’ PM may not be
directly applied to the ‘‘Belgium’’ PM, and since loga-
rithms of PM are considered in this work, this would result
in systematic biases. Second, and contrary to the case of
Lille data, the CIMEL radiometer is not located in the same
place as the PM measurements stations. In fact, Veurnes is
located halfway between Dunkerque and Oostende, but it

Figure 10. Wind term of the component related to p1ta of
the AVCM2 with dropped terms and fitted on Lille data.

Figure 11. Wind and Julian Day terms related to the p2ta component for the AVCM2 with dropped
terms and fitted on Lille data.
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Figure 12. PM10 versus AOT following the AVCM2 for different Julian days. Solid line is for a = �1,
and dashed line is for a = 0.
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is a small town with no industrial activities compared to
the two others.

5. Discussion and Conclusions

[44] In this work, a model is proposed to derive PM from
AOT by varying the coefficients of a standard linear model
in function of several auxiliary parameters. The variables in
the linear model are two linear combinations of the loga-
rithms of the AOTs at 440, 670, and 870 nm, which together
are almost equivalent, in terms of provided information, to
the AOTs at two distinct wavelengths, as discussed in
section 3.2. Physically, the AOTs at two wavelengths are
needed because the color of the aerosols is directly associ-
ated with the size distribution. The auxiliary parameters are
composed of the Julian date and of the meteorological
parameters.
[45] This approach is quite successful, with 70% and 75%

of the deviance being explained by the models adjusted on
Veurnes and Lille data, respectively. Nonetheless, further
investigations are required to better assess the influence of
the meteorological parameters on the relationship, since the
meteorological grid of 1� by 1� used in this study is maybe
too coarse for this local correlation, and better spatial
resolutions are certainly needed.
[46] As discussed in the previous section, the localization

of the models is strong. In fact, this is typical of modeling
situations dealing with longitudinal data with between-

subject differences (herein, one subject corresponds to one
measurement site). In this case, it might be interesting to
develop a unique model that explains the two data sets
simultaneously. This might be achieved by incorporating
random effects in the AVCM, which would lead to a mixed
effects varying coefficient model. A mixed effect model is
composed of fixed effects that represent a general phenom-
enon, common to all subjects, while random effects account
for statistical differences between subjects. This point of
view might be relevant when PM retrieval is sought on a
finite number of locations. Alternatively, when the goal is to
provide one with a continuous map of ground PM, it might
be more appropriate to adopt the point of view of spatial
processes, i.e., to consider the observations as realizations
of spatial random fields, and to involve spatial coordinates
in the retrieving model.
[47] This point of view is particularly relevant in the

perspective of applying a similar methodology to satellite-
derived AOTs. Presently, one limitation is the need of the

Figure 13. Application to the second site. Predicted versus expected PM for the AVCM2 with dropped
terms.

Table 3. Comparison Statistics for the Application of the Two

AVCMs to the Second Site: Mean and Standard Deviation s(e) of
the Residuals and Squared Correlation Coefficient R2 Between

Predicted and Expected PM10

Model Mean s(e) R2

AVCM 1 �0.021 0.35 0.30
AVCM 2 �0.012 0.36 0.30
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AOTs at two wavelengths. Such products are available over
water, but some progress still need to be done over land.

Appendix A: Theoretical Materials

[48] Appendix A presents the theoretical materials behind
smoothing splines and varying coefficient models. The
exposition is intentionally constrained to the setting of the
paper, and is organized as follows. The first paragraph
introduces penalized smoothing splines and their use for
scatterplot smoothing. Next, varying coefficient models
with additive components represented with smoothing
splines are presented.

A1. Penalized Smoothing Splines

[49] Splines functions are very attractive for nonparamet-
ric modeling and regression analysis [see, e.g., Eilers and
Marx, 1996; Wood, 2003], and the references therein for
materials on the subject.
[50] Basically, a spline function is composed of polyno-

mial pieces that are connected at some points, called knots,
in a certain manner, typically related to the order of
differentiability of the function. A B-spline of order 3 of a
real variable x is constructed on the basis of 5 knots, say k0,
k1, k2, k3, and k4, and consists of three cubic parts joined at
the knots k1, k2, and k3. At these joining knots, the values

of the cubic parts match, as well as their derivatives up to
order 2. Outside the interval (k0; k4), the B-spline equals
zero. Now given M + 1 knots k0, . . ., kM, a third-degree
B-splines basis may be constructed this way; its dimension
isM + 3. Now consider a smoothing problem where, given a
data set of N pairs (xi, yi), a function f: IR ! IR that ‘‘fits the
data well’’ is to be estimated. Let 81, . . ., 8M be a B-spline
basis of dimensionM. A model f based on spline functions is
defined as being a linear combination of these basis func-
tions, i.e., it is expressed as

f xð Þ ¼
XM
k¼1

ak8k xð Þ: ðA1Þ

[51] The least squares estimates of the coefficients (fur-
ther denoted by âk) are obtained by minimizing the objec-
tive function

1

2

XN
i¼1

yi � f xið Þð Þ2¼ 1

2

XN
i¼1

yi �
XM
k¼1

ak8k x1ð Þ
 !2

; ðA2Þ

with respect to the ak, which may be solved via some
elementary matrix calculus as follows.
[52] Let y = (y1, . . ., yN)

T. Similarly, arrange the outputs
~yi = f (xi) of the model for the N samples in the vector ~y =

Figure 14. Fitted versus expected PM for the AVCM adjusted on Veurnes data. The errors have a null
mean and a standard deviation of 0.2249, and the squared correlation coefficient is equal to 0.6992.
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(~y1, . . ., ~yN)
T. Let C be the design matrix with N rows and

M columns, where the entry on the ith row and jth column
is defined to be Cij = 8j (xi). Let a = (a1, . . ., aM)

T. Then
we have ~y = Ca and the objective function takes the
following expression:

1

2

XN
i¼1

yi � f xið Þð Þ2¼ 1

2
k y� Ca k2 : ðA3Þ

[53] Then the parameter vector â minimizing the objec-
tive function is given by

â ¼ CTC
� ��1

CTy: ðA4Þ

[54] When the number of knots is large, i.e., when the
dimension of the basis is large relatively to the number of
data points, this type of model is very flexible and may lead
to overfitting. The idea behind penalized smoothing splines
is to penalize the roughness of the model, by minimizing the
following objective function:

1

2
k y� Ca k2 þlR að Þ; ðA5Þ

where R(a) is a roughness penalty term, and where l is a
smoothness parameter that controls the trade-off between
goodness-of-fit and parsimony. In the context of B-splines,
a quadratic penalty based on the integrated squared second
derivative of the model is a popular choice. Such a penalty
is defined by 1

2
aTDa, where D is the matrix with entries

Dij ¼
Z

800
i xð Þ800

j xð Þdx: ðA6Þ

[55] Then for a fixed smoothness parameter, the solution
to the minimization problem is given by

â ¼ CTCþ lD
� ��1

CTy: ðA7Þ

[56] So for a given smoothness parameter, the parameter
estimation problem is solved using elementary matrix
algebra. However, it is in no way obvious to estimate a
suitable smoothing parameter, as attested by the important
statistical literature on the subject of model selection statis-
tics, the most common of whose being cross validation or
generalized cross validation. Actually, large values of the
smoothness parameter lead to smooth models, thus having
few degrees of freedom. Conversely, small values of the
smoothness parameters lead to rough models with a large
number of degrees of freedom. Smoothness parameter
estimation for the AVCM is discussed in the next paragraph.
[57] So far, only modeling of univariate functions has been

exposed. As mentioned above, representing multivariate
functions with B-splines is fairly straightforward by consid-
ering tensor products of the marginal basis. For instance, let
x and y two real variables, and let 81, . . ., 8M and y1, . . ., yK

be two univariate splines basis for respectively x and y. Then
the bivariate tensor product spline basis is composed of the
bivariate functions 8i 	 yj, for i = 1, . . .,M and j = 1, . . ., K.
They are defined by (8i 	 yj)(x, y) = 8i(x)yj (y). This is also

in the form of a linear model. Denoting by Cx and Cy the
design matrices of the marginal basis for the x and y
variables, respectively, the design matrix relative to the
tensor product spline basis is simply given by the tensor
product of Cx and Cy, i.e., we have C = Cx 	 Cy Concerning
penalty matrices for multidimensional splines, there exist
different solutions. For bivariate terms, the solution adopted
in this work is to have a bipenalty, i.e., one penalty along
each direction. In this case, and denoting by Dx and Dy the
marginal penalty matrices, the objective function to be
minimized is now given by:

1

2
k y� Ca k2 þlx

1

2
aTDxaþ ly

1

2
aTDya; ðA8Þ

where with a bipenalty, two smoothing parameters are
involved to control the trade-off, as explained above.

A2. AVCM

[58] A varying coefficient model is a linear model, the
parameters of which are functions of so-called modifying
variables [Hastie and Tibshirani, 1993], and in this paper,
the components of the introduced varying coefficient mod-
els are additive; see Friedman and Stuetzle [1981], Hastie
and Tibshirani [1990], and Ruppert et al. [2003] for
materials on additive models. More specifically, the AVCM
defined above by equation (11) has three components: one
for the intercept, one related to p1ta, and one related to
p2ta. In turn, each component is the sum of five terms: one
bivariate (case of the wind term), and four univariate (case
of the pressure, the relative humidity, the precipitable water,
and the day number), i.e., for i = 0, 1, 2, we have, see
equation (12) a total of 15 terms, that are represented using
B-splines basis as defined above. So to each term there
corresponds a design matrix, and either one or two penalty
matrices with associated smoothness parameters, depending
on the case (univariate or bivariate). Let Ci

w, Ci
p, Ci

h, Ci
pw,

and Ci
d be the design matrices of the terms of the ith

component, where components 0, 1, and 2 correspond to
the intercept, p1ta, and p2ta, respectively. These matrices
all have N = 724 rows. Let Ci = diag (Ci

w, Ci
p, Ci

h, Ci
pw, Ci

d),
for i = 0, 1, 2. For i = 1 and i = 2, define the matrix ~Ci where
the klth entry is the klth entry of Ci times the kth sample of
pita in the data set. Now let C = [C0 Ĉ1 Ĉ2]; this is the
designmatrixof theAVCM.DenotebyDi

w,x,Di
w,y,Di

p,Di
h,Di

pw,
Di
pw, and Di

d, the penalty matrices associated with the terms
of the ith component, where the first two correspond to the
penalty matrices associated with the marginal bases of the
wind vector components. Denote also by ai

w, ai
p, ai

h, ai
pw,

and ai
d the parameters of the terms of the ith component,

and by a a concatenation of these vectors. Then the
objective function of the AVCM to be minimized is given
by

1

2
k y� Ca k2 þ 1

2

X2
i¼0

lw;x
i aw

i

� �T
Dw

i a
w
i þ lw;y

i aw
i

� �T
Dw

i a
w
i

	

þ lp
i ap

ið ÞTDp
i a

p
i þ lh

i ah
i

� �T
Dh

i a
h
i þ ld

i ad
i

� �T
Dd

i a
d
i



; ðA9Þ

where all the li s are smoothing parameters. They are in a
number of 18. Given the smoothness parameters, the
estimation of the parameter vector a is obtained by similar
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linear operations as defined above. The main point is to
estimate the smoothing parameters. This has been achieved
by minimizing the Generalized Cross Validation (GCV)
score according to the stable and efficient method of Wood
[2004; see also Wood, 2000]. The procedure is also
available as a function in the mgcv package for the
R statistical software. Both are available at http://www.
r-project.org.
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B. Pelletier, Institut de Mathématiques et de Modélisation de Montpellier,

UMR CNRS 5149, Equipe de Probabilités et Statistique, Université
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