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Abstract

The nonparametric estimation of the regression function of

a real-valued random variable Y on a random object X val-

ued in a closed Riemannian manifold M is considered. A

regression estimator which generalizes kernel regression es-

timators on Euclidean sample spaces is introduced. Under

classical assumptions on the kernel and the bandwidth se-

quence, the asymptotic bias and variance are obtained, and

the estimator is shown to converge at the same L
2-rate as

kernel regression estimators on Euclidean spaces.

Index Terms — Nonparametric regression, Kernel regres-

sion, Riemannian manifolds, L
2-convergence.

1 Introduction

Sample spaces which have a more complex structure than the Euclidean space
R

d arise in a variety of contexts and motivate the adaptation of popular non-
parametric density or regression estimation techniques on R

d, such as kernel
smoothing (see e.g.,[26, 28] for a review). This includes the case of func-
tional statistics, where the regressors are curves or functions taking values in
infinite-dimensional metric spaces or semi-normed vector spaces [11, 10, 8],
and the case of random objects valued in manifolds of various kind, such as
the circle S1, the sphere S2, and the Stiefel manifold.

The circle and the sphere arise as sample spaces in axial and directional
statistics. Several specific statistical methodologies have been developed
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[23, 29, 20], as well as adaptations of existing nonparametric density or regres-
sion estimation techniques, including trigonometric Fourier series [9], kernel
smoothing [14, 12], and deconvolution [16, 15, 18]. The analysis of orienta-
tion data leads to the Stiefel manifold as the sample space. This manifold
is defined as the set of orthonormal m-frames in R

d, and includes the sphere
and the orthogonal group as special cases. Prentice [25] introduces an ex-
tension of spherical regression to this setting, and Lee and Ruymgaart [22]
consider nonparametric regression estimation using caps, i.e. intersections
of closed balls in the ambient space with the manifold, following an earlier
work on density estimation on compact submanifolds of a Euclidean space
[19]. Parallely, Chikuse [6] adapts the kernel method for density estimation
on the Stiefel manifold. For a larger class of manifolds, Hendriks [17] gen-
eralizes the method of Fourier series for density estimation on closed (i.e.,
compact and without boundary) Riemannian manifolds, using an expansion
on the eigenfunctions of the Laplace-Beltrami operator.

In this paper, we consider the nonparametric estimation of a regression
function on a closed Riemannian manifold by using a generalization of the
kernel method, that we recently introduced in [24] for density estimation. The
idea is to build an analogue of a kernel on M by using a positive function of
the geodesic distance on M , which is then normalized by the volume density
function of M to account for curvature. This kind of estimator has interesting
properties: i) its expression is consistent with standard kernel estimators on
Euclidean spaces, i.e. when (M, g) is (Rd, δ) the estimator expression reduces
to the one of a standard kernel estimator on (Rd, δ) ; ii) it converges at the
same rate as the Euclidean kernel estimator ; and iii) provided the bandwidth
is small enough, the kernel is centered on the observation, i.e. the observation
is an intrinsic mean of its associated kernel.

In Section 2 we define the kernel regression estimator of a real-valued
random variable Y on a random object X valued in M , and we introduce
several assumptions on the kernel and the bandwidth sequence. For materials
on differential and Riemannian geometry, we refer the reader to [5, 21, 13, 30].
In Section 3, the asymptotic pointwise bias and variance are obtained under
regular assumptions on the bandwidth sequence. This leads immediately
to the asymptotic pointwise mean squared error, using the decomposition
in terms of squared bias and variance [27]. Finally, we give an integrated
version of this result.
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2 Definitions and assumptions

Let (M, g) be a closed (i.e. compact and without boundary) Riemannian
manifold of dimension d. We assume that (M, g) is complete, i.e., (M,dg) is
a complete metric space, where dg denotes the Riemannian distance.

Let X be a random object on M , i.e. a measurable map from a probability
space (Ω,A, P ) to (M,B), where B denotes the Borel σ-field of M . We
assume that the image measure of P by X is absolutely continuous with
respect to the Riemannian volume measure vg, and that it admits an a.s.
continuous density f on M . Let Y be a real-valued random variable, and let
r : M ∋ p 7→ r(p) = E[Y |X = p] ∈ R be the regression function of Y on X.
Let s : M → R be the function defined by s(p) = r(p)f(p), for all p ∈ M .
We consider the nonparametric estimation of the regression function r based
on an i.i.d. sample (X1, Y1), ..., (Xn, Yn) of pairs valued in M ×R and of the
same law as (X,Y ).

Let K : R+ → R be a positive and continuous map such that:

(K1)
∫

Rd K(‖u‖)dλ(u) = 1,

(K2)
∫

Rd uK(‖u‖)dλ(u) = 0,

(K3)
∫

Rd ‖u‖2K(‖u‖)dλ(u) < ∞,

(K4) suppK = [0; 1],

where λ denotes the Lebesgue measure on R
d.

For p and q two points of M , let θp(q) be the volume density function on
M roughly defined by [1, p. 154]:

θp : q 7→ θp(q) =
µexp∗pg

µgp

(exp−1
p (q)),

i.e., the quotient of the canonical measure of the Riemannian metric exp∗pg
on Tp(M) (pullback of g by the map expp) by the Lebesgue measure of
the Euclidean structure gp on Tp(M). This definition makes sense for q

in a neighborhood of p, yet the volume density function may be defined
globally by recursing to Jacobi fields [30, p. 219]. In terms of geodesic
normal coordinates at p, θp(q) equals the square root of the determinant of
the metric g expressed in these coordinates at exp−1

p (q), and for p and q in a
normal neighborhood U of M , we have θp(q) = θq(p) [30, p. 221].
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We define the estimators fn and sn of f and s respectively by:

fn(p) =
1

n

n
∑

i=1

1

hd
n

1

θXi
(p)

K

(

dg(p,Xi)

hn

)

, (1)

sn(p) =
1

n

n
∑

i=1

Yi

1

hd
n

1

θXi
(p)

K

(

dg(p,Xi)

hn

)

, (2)

for all p ∈ M , and where hn is the bandwidth. Finally, we define the regres-
sion estimator rn of r by:

rn(p) =
sn(p)

fn(p)
(3)

=

1
n

∑n

i=1 Yi
1

hd
n

1
θXi

(p)
K

(

dg(p,Xi)

hn

)

1
n

∑n

i=1
1

hd
n

1
θXi

(p)
K

(

dg(p,Xi)

hn

) , (4)

if fn(p) 6= 0, and by rn(p) = 0 otherwise.
To allow for simple computations in normal charts, we impose the follow-

ing condition on the bandwidth:

(A0) hn < injg(M),

where injg(M) is the injectivity radius of M . Note that since M is compact,
the injectivity radius of M is strictly positive, by the theorem of Whitehead.
Under this condition, there exists, for each p ∈ M , a normal coordinate
neighborhood at p containing the closed ball BM(p, hn) in M .

As mentioned in the Introduction, these estimators have interesting prop-
erties. First, when (M, g) is the Euclidean space (Rd, δ), we have θp(q) =
1,∀p, q ∈ M . Hence in that case, fn, sn, and rn reduce to standard ker-
nel estimators with isotropic kernels. Second, the kernels introduced in
Eq. (1) and Eq. (2) are centered on the observation, in the sense that Xi

is an intrinsic mean of the probability measure associated with the density
1

hd
n

1
θXi

(p)
K

(

dg(p,Xi)

hn

)

. An intrinsic mean of a probability measure µ on a Rie-

mannian manifold M is a minimizer of the energy functional [21, 2, 3]

F (p) =

∫

M

d2
g(q, p)dµ(q).

This statement holds whenever the bandwidth is small enough. More specif-
ically, we have the following result [24].
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Proposition 2.1 Let q be an arbitrary point of M . Let K : ∪p∈MG2
pM → R

be the sectional curvature of M , where G2
pM is the set of 2-dimensional sub-

spaces of Tp(M). Let δ = supK be the supremum of the sectional curvatures
in M . Let µ be a probability measure on M , absolutely continuous w.r.t. the
Riemannian volume measure, and with a density fq(p) defined by

fq(p) =
1

hd

1

θq(p)
K

(

dg(p, q)

h

)

,

where K satisfies (K1)-(K4), where h < min{ injg(M)

2
, π

4
√

δ
}, and where we set

π

4
√

δ
= +∞ when δ ≤ 0 . Then q is the unique intrinsic mean of µ.

Example 2.2 Let the manifold (M, g) be (Rd, δ), where δ denotes the usual
Euclidean metric, and consider the canonical identification of the tangent
space TpM at some point p of (Rd, δ), with R

d. Note that any two tangent
spaces at different points are also canonically identified. This defines trivialy
a normal chart, the domain of which is the entire manifold. In this chart, the
components of the metric tensor form the identity matrix, and for all p, q ∈
R

d, we have θp(q) = 1. Then in a system (x1, ..., xd) of normal coordinates,
and denoting by ‖x‖ the length of x considered as a vector of T0R

d, we obtain
that:

rn(x) =

1
n

∑n

i=1 Yi
1

hd
n
K

(

‖x−Xi‖
hn

)

1
n

∑n

i=1
1

hd
n
K

(

‖x−Xi‖
hn

) ,

which is the expression of a standard kernel regression estimator with isotropic
kernels. The bandwidth may be arbitrarily large since injδ

(

R
d
)

= ∞. The
concept of intrinsic mean used in Proposition 2.1 reduces to the one of the
standard mean of a random vector, which naturally is unique, and for all
h > 0 since (Rd, δ) has constant sectional curvature equal to 0.

Example 2.3 Consider the surface in R
3 defined on the unit disk D1 by

(u, v) 7→
(

u

ρ
sin ρ,

v

ρ
sin ρ, cos ρ

)

,

where ρ =
√

u2 + v2, which is the upper-hemisphere of S2 considered as a
submanifold of R

3. We now illustrate the construction of a kernel centered at
the point p of the surface of coordinates (0, 0, 1) in R

3. Note that (u, v) is a
system of normal coordinates at p : expp ((u, v)) is the point on the geodesic
issued from p in the direction of (u, v), and located at the distance ρ from p.
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The coordinates vector fields are given by:

∂u =

(

u2

ρ2
cos ρ +

v2

ρ3
sin ρ,

uv

ρ2
cos ρ − uv

ρ3
sin ρ,−u

ρ
sin ρ

)

,

∂v =

(

uv

ρ2
cos ρ − uv

ρ3
sin ρ,

v2

ρ2
cos ρ +

u2

ρ3
sin ρ,−v

ρ
sin ρ

)

,

when ρ 6= 0 and by ∂u = (1, 0, 0) and ∂v = (0, 1, 0) otherwise. In this chart,
the components of the metric tensor are given by: gp,11 = u2

ρ2 + v2

ρ4 sin2 ρ,

gp,22 = v2

ρ2 + u2

ρ4 sin2 ρ, and gp,12 = uv
ρ2 − uv

ρ4 sin2 ρ, when ρ 6= 0, and by gp,ij = δij

when ρ = 0. Then in this chart, |gp|(u, v) = sin2 ρ

ρ2 when ρ 6= 0, and |gp|(0, 0) =

1. Note that it is a special case that |gp| only depends on the distance from
p. Then, the expression of a kernel centered at p is fp(u, v) = 1

h2

ρ

| sin ρ|K
(

ρ

h

)

.

3 Convergence properties

In this section, we study the L2-convergence of rn. First we derive asymptotic
expansions of the pointwise bias and variance of fn and sn in Theorem 3.1 and
Theorem 3.2. Then we formulate results on the asymptotic pointwise bias
and variance of rn in Theorem 3.3 and Theorem 3.4, leading to the result in
Theorem 3.5 on the asymptotic pointwise mean squared error, the proofs of
whose mainly follow the lines devised by Collomb [7] (see also [26]). Finally,
we give an integrated version of this result. For the pointwise convergence
results at a point p ∈ M , we will need the following assumptions:

(A1) lim hn = 0 and lim nhd
n = ∞;

(A2) Y is bounded;

(A3) f is two-times continuously differentiable at p and f(p) > 0;

(A4) r is two-times continuously differentiable at p;

(A5) ϕ(p)
def
= E {Y 2|X = p} is continuous at p.

In all of the following, we shall use the Einstein summation convention. The
closed ball in (M, g) of center p and of radius h will be denoted by BM(p, h),
and the closed ball in (Rd, δ) centered at the origin and of radius h will be
denoted by B(h).
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Theorem 3.1 (Pointwise bias and variance of fn.) Let fn be the den-
sity estimator of f defined by Eq. (1). Assume (K1)-(K4), (A0), (A1), and
(A3) hold. Then the asymptotic pointwise bias and variance of fn are given
by:

Efn(p) − f(p) =
1

2

(

(∇2f(p))ij

∫

B(1)

K(‖u‖)uiujdu

)

h2
n + o(h2

n), (5)

V ar (fn(p)) =
1

nhd
n

f(p)

∫

B(1)

K2 (‖u‖) du + o

(

1

nhd
n

)

. (6)

Proof
Proof of Eq. (5):

Efn(p) = E
1

hd
n

1

θX(p)
K

(

dg(p,X)

hn

)

=

∫

M

1

hd
n

1

θq(p)
K

(

dg(p, q)

hn

)

f(q)dvg(q).

The integral may be taken over BM(p, hn), and using the relation θq(p) =
θp(q) on BM(p, hn), we have:

Efn(p) − f(p) =

∫

BM (p,hn)

1

hd
n

1

θp(q)
K

(

dg(p, q)

hn

)

f(q)dvg(q) − f(p)

=

∫

BM (p,hn)

1

hd
n

1

θp(q)
K

(

dg(p, q)

hn

)

(f(q) − f(p)) dvg(q).

Now we let x = exp−1
p (q) and we take a covariant Taylor expansion of f

around p at the order two, and with the remainder denoted by R(p, x):

Efn(p) − f(p) =

∫

BM (p,hn)

1

hd
n

1

θp(q)
K

(

dg(p, q)

hn

)

(

(∇f(p))ix
i +

1

2
(∇2f(p))ijx

ixj + R(p, x)

)

dvg(q)

=

∫

BM (p,hn)

1

hd
n

1

θp(q)
K

(

dg(p, q)

hn

) (

1

2
(∇2f(p))ijx

ixj + R(p, x)

)

dvg(q)

=
1

2

(

(∇2f(p))ij

∫

B(1)

K(‖u‖)uiujdu

)

h2
n + o(h2

n).
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Proof of Eq. (6):
The variance of fn(p) may be expressed as:

V ar (fn(p)) =
n

(nhd
n)2

V ar

(

1

θX(p)
K

(

dg(p,X)

hn

))

=
1

nhd
n

E

{

1

hd
n

1

θ2
X(p)

K2

(

dg(p,X)

hn

)}

− 1

n
E

{

1

hd
n

1

θX(p)
K

(

dg(p,X)

hn

)}2

=
1

nhd
n

E

{

1

hd
n

1

θ2
X(p)

K2

(

dg(p,X)

hn

)}

− 1

n
(f(p) + o(1))2

.

Now we compute the expectation:

E

{

1

hd
n

1

θ2
X1

(p)
K2

(

dg(p,X1)

hn

)}

=

∫

M

1

hd
n

1

θ2
q(p)

K2

(

dg(p, q)

hn

)

f(q)dvg(q)

=

∫

BM (p,hn)

1

hd
n

1

θ2
p(q)

K2

(

dg(q, p)

hn

)

f(q)dvg(q)

= (f(p) + o(1))

∫

B(hn)

1

hd
n

1
√

|gp(x)|
K2

(‖x‖
hn

)

dx

= f(p)

∫

B(1)

K2 (‖u‖) du + o(1),

where we have used the fact that
√

|gp(x)| = 1 + o(1) in a normal chart at
p. Finally, we obtain:

V ar (fn(p)) =
1

nhd
n

f(p)

∫

B(1)

K2 (‖u‖) du + o

(

1

nhd
n

)

�

Theorem 3.2 (Pointwise bias and variance of sn.) Let sn be the esti-
mator of s defined by Eq. (2). Assume (K1)-(K4), (A0), (A1), (A3)-(A5)
hold. Then the asymptotic pointwise bias and variance of sn are given by:

Esn(p) − s(p) =
1

2

(

(∇2s(p))ij

∫

B(1)

K(‖u‖)uiujdu

)

h2
n + o(h2

n), (7)

V ar (sn(p)) =
1

nhd
n

f(p)ϕ(p)

∫

B(1)

K2 (‖u‖) du + o

(

1

nhd
n

)

. (8)
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Proof
The proofs of Eq. (7) and Eq. (8) follow the same lines as the proofs of

Eq. (5) and Eq. (6) in Theorem 3.1.

Proof of Eq. (7):
We have:

Esn(p) = EY
1

hd
n

1

θX(p)
K

(

dg(p,X)

hn

)

=

∫

M

r(q)
1

hd
n

1

θq(p)
K

(

dg(p, q)

hn

)

f(q)dvg(q)

=

∫

M

s(q)
1

hd
n

1

θq(p)
K

(

dg(p, q)

hn

)

dvg(q).

Now, by using a covariant Taylor expansion of s around p, the desired result
follows.

Proof of Eq. (8):
We have:

V ar (sn(p)) =
n

nhd
n

V ar

(

Y
1

θX(p)
K

(

dg(p,X)

hn

))

=
1

nhd
n

E

{

Y 2 1

θ2
X(p)

1

hd
n

K2

(

dg(p,X)

hn

)}

− 1

n
E

{

Y
1

θX(p)

1

hd
n

K

(

dg(p,X)

hn

)}2

=
1

nhd
n

∫

M

ϕ(q)
1

θ2
q(p)

1

hd
n

K2

(

dg(p, q)

hn

)

f(q)dvg(q) −
1

n
(s(p) + o(1))2

,

from which the result easily follows. �

Theorem 3.3 (Pointwise bias of rn.) Let rn be the regression estimator
defined by Eq. (3). Assume (K1)-(K4) and (A0)-(A4) hold. Then the asymp-
totic pointwise bias of rn is given by

Ern(p) − r(p) =
1

2f(p)

∫

B(1)

K(‖u‖)uiujdu
(

(

∇2s(p)
)

ij
− r(p)

(

∇2f(p)
)

ij

)

h2
n

+o(h2
n) + O

(

1

nhd
n

)

.

Proof
Using the decomposition

1

z
= 1 − (z − 1) +

(z − 1)2

z
,
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we obtain that

Ern(p) =
Esn(p)

Efn(p)
− A

(Efn(p))2 +
B

(Efn(p))2 , (9)

where

A = E {sn(p)(fn(p) − Efn(p))} ,

B = E{(fn(p) − Efn(p))2rn(p)}.
Expression of A :

Using the independence and the equidistribution of the pairs (Xi, Yi), we
obtain that

A = Cov(fn(p), sn(p))

=
1

nhd
n

E

{

Y
1

θ2
X(p)

1

hd
n

K2

(

dg(p,X)

hn

)}

− 1

n
E

{

Y
1

θX(p)

1

hd
n

K

(

dg(p,X)

hn

)}

E

{

1

θX(p)

1

hd
n

K

(

dg(p,X)

hn

)}

def
=

1

nhd
n

E1 −
1

n
E2E3.

Now we compute the three expectations E1, E2, and E3. We have:

E1 = E

{

Y
1

θ2
X(p)

1

hd
n

K2

(

dg(p,X)

hn

)}

=

∫

BM (p,hn)

s(q)
1

θ2
p(q)

1

hd
n

K2

(

dg(q, p)

hn

)

dvg(q)

= (s(p) + o(1))

∫

BM (p,hn)

1

θ2
p(q)

1

hd
n

K2

(

dg(q, p)

hn

)

dvg(q)

= s(p)

∫

B(1)

K2 (‖u‖) du + o(1),

where we have used the fact that
√

|gp(x)| = 1 + o(1) in a normal chart at
p. Using similar computations, we obtain the following relations:

E2 = E

{

Y
1

θX(p)

1

hd
n

K

(

dg(p,X)

hn

)}

= s(p) + o(1);

E3 = E

{

1

θX(p)

1

hd
n

K

(

dg(p,X)

hn

)}

= f(p) + o(1).
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Thus

A =
1

nhd
n

(

s(p)

∫

B(1)

K2 (‖u‖) du + o(1)

)

+
1

n
(s(p) + o(1)) (f(p) + o(1)) ,

which leads to:

A =
1

nhd
n

s(p)

∫

B(1)

K2 (‖u‖) du + o

(

1

nhd
n

)

. (10)

Expression of B:

Since Y is bounded and since K is positive, rn(p) is almost surely bounded
by a constant C and thus

B ≤ CE
{

(fn(p) − Efn(p))2}
.

Using similar computations as above, we obtain that

B = O

(

1

nhd
n

)

. (11)

Now using equations (5), (7), (9), (10), and (11), we have:

Ern(p) =
Esn(p)

Efn(p)
+ O

(

1

nhd
n

)

=
s(p) + 1

2
(∇2s(p))ij

∫

B(1)
K(‖u‖)uiujduh2

n + o(h2
n)

f(p) + 1
2
(∇2f(p))ij

∫

B(1)
K(‖u‖)uiujduh2

n + o(h2
n)

+ O

(

1

nhd
n

)

= r(p) − 1

2

s(p)

f 2(p)

(

∇2f(p)
)

ij

∫

K(‖u‖)uiujduh2
n

+
1

2

1

f(p)

(

∇2s(p)
)

ij

∫

B(1)

K(‖u‖)uiujduh2
n + o(h2

n) + O

(

1

nhd
n

)

= r(p) +
1

2f(p)

∫

B(1)

K(‖u‖)uiujdu
(

(

∇2s(p)
)

ij
− r(p)

(

∇2f(p)
)

ij

)

h2
n

+o(h2
n) + O

(

1

nhd
n

)

.

�

Theorem 3.4 (Pointwise variance of rn.) Let rn be the regression esti-
mator defined by Eq. (3). Assume (K1)-(K4) and (A0)-(A5) hold. Then the
asymptotic pointwise variance of rn is given by:

V ar (rn(p)) =
1

nhd
n

ϕ(p) − r2(p)

f(p)

∫

K2 (‖u‖) du + o

(

1

nhd
n

)

.
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Proof
We have [26]:

V ar (rn(p)) =
V ar (sn(p))

(Efn(p))2 − 4
Esn(p)Cov (fn(p), sn(p))

(Efn(p))3

+3V ar (fn(p))
(Esn(p))2

(Efn(p))4 + o

(

1

nhd
n

)

.

By using equations (5) to (8), and the expression for Cov(fn(p), sn(p)) given
in the proof of Theorem 3.3, we obtain the desired result. �

As a corollary of Theorem 3.3 and Theorem 3.4, we obtain the asymptotic
pointwise mean squared error.

Theorem 3.5 (Pointwise mean squared error.) Let rn be the regression
estimator defined by Eq. (3). Assume (K1)-(K4) and (A0)-(A5) hold. Then
the asymptotic quadratic mean of rn is given by:

E {rn(p) − r(p)}2 = µ2(p)h4
n + σ2(p)

1

nhd
n

+ o

(

h4
n +

1

nhd
n

)

,

where

µ(p) =
1

2f(p)

∫

B(1)

K(‖u‖)uiujdu
(

(

∇2s(p)
)

ij
− r(p)

(

∇2f(p)
)

ij

)

,

σ2(p) =
1

nhd
n

ϕ(p) − r2(p)

f(p)

∫

B(1)

K2 (‖u‖) du.

To obtain the mean integrated squared error of rn:

MISE(rn) = E‖rn − r‖2
L2(M),

we need uniform versions of assumptions (A3)-(A5), i.e.:

(A’3) f is two-times continuously differentiable on M and infM f > 0;

(A’4) r is two-times continuously differentiable on M ;

(A’5) ϕ is continuous on M .

As M is compact, the functions r and f are uniformly continuous over M .
By inspecting the proofs of the previous results, one easily checks that the
o-symbol in Theorem 3.5 is uniform over M , which leads to the following
asymptotic expression of MISE(rn).
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Theorem 3.6 (MISE of rn.) Let rn be the regression estimator defined by
Eq. (3). Assume (K1)-(K4), (A0)-(A2), and (A’3)-(A’5) hold. Then the
asymptotic MISE of rn is given by:

MISE(rn) =

∫

M

µ2(p)dvg(p)h4
n +

∫

M

σ2(p)dvg(p)
1

nhd
n

+ o

(

h4
n +

1

nhd
n

)

,

where µ(p) and σ(p) are as in Theorem 3.5.

Corollary 3.7 With the notations and under the assumptions of the previ-

ous theorem, if hn ∼ n− 1

d+4 then MISE(rn) = O
(

n− 4

d+4

)

.

4 Concluding remarks

Remark 4.1 The assumption of compactness of the manifold is mainly use-
ful for the derivation of the global convergence rate. Note, however, that the
compactness of M implies that its injectivity radius is strictly positive. So
for the pointwise convergence results, the compactness assumption may be
replaced by the assumption that the manifold is complete and has a strictly
positive injectivity radius.

Remark 4.2 It is assumed that Y is bounded for the sake of simplicity of
the proofs of the asymptotic properties. Nonetheless, it is possible to replace
this assumption by the assumption that EY 2 < ∞ at the price of a stronger
condition on the bandwidth sequence, namely that there exists some α > 0
such that n1−αhd

n → ∞ (see [4, 7]).

Remark 4.3 These results show that the estimator rn of r on (M, g) con-
verges at the same L2-rate as a kernel regression estimator on (Rd, δ), under
similar assumptions. The estimator rn is built on functions on M of the form
1

hd
n

1
θXi

(p)
K

(

dg(p,Xi)

hn

)

, which are probability density functions on M and may

be considered as a kernel on M with bandwidth hn. It is interesting to note
that such a kernel depends on the local geometry of M in a neighborhood of
the observation Xi via the volume density function θXi

(p). This appears to
be necessary for obtaining an estimator which is consistent with kernel esti-
mators on (Rd, δ), and which possesses the same properties under a similar
bunch of assumptions.
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