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Abstract

The estimation of the underlying probability density of n

i.i.d. random objects on a compact Riemannian manifold

without boundary is considered. The proposed methodol-

ogy adapts the technique of kernel density estimation on Eu-

clidean sample spaces to this non-Euclidean setting. Under

sufficient regularity assumptions on the underlying density,

L
2 convergence rates are obtained.

Index Terms — Nonparametric density estimation, Kernel

density estimation, Riemannian manifolds, L
2 convergence.

1 Introduction

The situation where the sample space is not Euclidean, but has the structure
of a differentiable manifold, may be encountered in numerous fields of sci-
ence. The case where the sample space is the circle S1 or the sphere S2 has
been extensively studied, and a great deal of concrete examples is provided
by the literature on axial and directional statistics. A survey of statistical
methodologies dealing with this kind of data may be found in (Jupp and
Mardia, 1989; Mardia, 1972; Watson, 1983).

In this paper, we discuss the estimation of a probability density on a
Riemannian manifold. The proposed methodology adapts the technique of
kernel density estimation on Euclidean sample spaces to this non-Euclidean
setting. The manifold is assumed compact without boundary and, to the
best of our knowledge, kernel density estimation on this large class of man-
ifolds has not been studied to date. Density estimation on the circle using
trigonometric Fourier series is considered in Devroye and Gyorfi (1985). The
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generalization of estimation with Fourier series to the case of a compact Rie-
mannian manifold without boundary is developed in Hendriks (1990), where
the theory builds upon the eigenfunctions of the Laplace-Beltrami operator
on the manifold. Related work on nonparametric deconvolution density es-
timation on the sphere S2 may be found in (Healy and Kim, 1996; Healy
et al., 1998; Hendriks, 2003). In Hendriks et al. (1993) and Lee and Ruym-
gaart (1996) the authors consider density and curve estimation on compact
smooth submanifolds of a Euclidean space using caps, i.e., intersections of the
manifold with closed balls in the ambient Euclidean space. Kernel methods
for nonparametric density estimation for axial or directional data are stud-
ied in (Hall et al., 1987; Fischer et al., 1993), where the kernels proposed by
the authors are normalized functions of the scalar product of the evaluation
point x and the observation Xi. Classical models for spherical data such as
the von Mises distribution on the circle or rotationally symmetric distribu-
tion (Watson, 1983) may be expressed as functions of a scalar product xtµ,
for x, µ ∈ Sd, which is none other than the cosine of the angle between x
and µ, showing that they may also be expressed as functions of the geodesic
distance on Sd.

The density estimator discussed in this paper is based on kernels that
are functions of the Riemannian geodesic distance on the manifold, and its
expression is consistent with the expressions of kernel density estimators in
the Euclidean case. This estimator has been used recently for image analysis
(Lee et al., 2004). It is shown that the appealing idea of centering a small
“mountain” on the observations, as mentioned in Van der Vaart (1998), is
preserved, in the sense that each observation is an intrinsic mean of its asso-
ciated kernel, provided that the bandwidth be small enough. The estimator
and its first properties are formulated in Section 2. Consistency is stud-
ied in Section 3. Under sufficient regularity assumptions on the underlying
density, L2 convergence rates are obtained. For materials on differential ge-
ometry, we refer to (Boothby, 1975; Kobayashi and Nomizu, 1969; Chavel,
1993; Willmore, 1993; Hebey, 1997).

2 Definition and first properties

Let (M, g) be a compact Riemannian manifold without boundary of dimen-
sion d. We shall assume that (M, g) is complete, i.e., (M,dg) is a complete
metric space, where dg denotes the Riemannian distance.

Let X be a random object on M , i.e., a measurable map on a probability
space (Ω,A, P ) taking values in (M,B), where B denotes the Borel σ-field
of M . We shall assume that the image measure of P by X is absolutely
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continuous with respect to the Riemannian volume measure, admitting an
a.s. continuous density f on M . The Riemannian volume measure will be
denoted by vg.

Let X1, ..., Xn be i.i.d. random objects on M with density f . Let K :
R+ → R be a non-negative map such that:
i)

∫

Rd K(‖x‖)dλ(x) = 1, ii)
∫

Rd xK(‖x‖)dλ(x) = 0,
iii)

∫

Rd ‖x‖2K(‖x‖)dλ(x) < ∞, iv) suppK = [0; 1], v) supK(x) = K(0),
where λ denotes the Lebesgue measure of R

d. Hence the map R
d ∋ x →

K(‖x‖) ∈ R is an isotropic kernel on R
d supported by the closed unit ball.

Let p and q be two points of M . Let θp(q) be the volume density function
on M , roughly defined by (Besse, 1978, p. 154):

θp : q 7→ θp(q) =
µexp∗pg

µgp

(exp−1
p (q)),

i.e., the quotient of the canonical measure of the Riemannian metric exp∗pg
on Tp(M) (pullback of g by the map expp) by the Lebesgue measure of the
Euclidean structure gp on Tp(M). The volume density function is certainly
defined for q in a neighborhood of p. In fact, it may defined globally by
using Jacobi fields (Willmore, 1993, p. 219). In terms of geodesic normal
coordinates at p, θp(q) equals the square-root of the determinant of the met-
ric g expressed in these coordinates at exp−1

p (q). For p and q in a normal
neighborhood U of M , we have θp(q) = θq(p) (Willmore, 1993, p. 221).

We define the density estimator of f as the map fn,K : M → R which, to
each p ∈ M , associates the value fn,K(p) defined by

fn,K(p) =
1

n

n
∑

i=1

1

rd

1

θXi
(p)

K

(

dg(p,Xi)

r

)

. (1)

Remark 2.1 Let M be R
d, with its usual Euclidean metric. Then θp(q) = 1

for all p, q ∈ M and fn,K(p) may be written as fn,K(p) = 1
n

∑n

i=1
1
rd K

(

‖p−Xi‖
r

)

So the expression of fn,K is consistent with the expressions of kernel density
estimators in the Euclidean case.
We impose the following condition on the bandwidth:

r ≤ r0, (2)

for some fixed r0 such that 0 < r0 < injg(M), where injg(M) denotes the
injectivity radius of M (Chavel, 1993, p. 108). Since M is compact, injg(M)
is strictly positive by the theorem of Whitehead. Hence the set of allowable
values for the bandwidth is not the null set. The condition r < injg(M)
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guarantees for each p ∈ M the existence of a normal coordinate neighbor-
hood at p containing BM(p, r), the ball in M centered at p and of radius r.
Imposing that r < r0 for some strictly positive r0 < injg(M) allows to deal
with compact balls in the proof of Lemma 3.3. This is not restrictive since
r0 may be chosen close to injg(M), but above all because asymptotics are
concerned with sequences rn decreasing with the number of observations.

Contrary to the Fourier series based density estimator in Hendriks (1990),
the estimator defined by Eq. (1) is a probability density on M . More precisely,
fn,K is a nonnegative function on M by assumption on K. Furthermore, let
p1, ..., pn be a realization of X1, ..., Xn. Then

∫

M

fn,K(p)dvg(p) =

∫

M

1

n

n
∑

i=1

1

θpi
(p)

K

(

dg(p, pi)

r

)

dvg(p) (3)

=

∫

M

1

rd

1

θp1
(p)

K

(

dg(p, p1)

r

)

dvg(p) (4)

=

∫

BM (p1,r)

1

rd

1

θp1
(p)

K

(

dg(p, p1)

r

)

dvg(p). (5)

Let (Up1
, exp−1

p1
) be the exponential chart at p1, with normal coordinates

x1, ..., xd. Under the above condition on the bandwidth, BM(p1, r) ⊂ Up1
.

Recall that the integral of a continuous function f with compact support
included in the domain of a chart (U,ϕ) takes the following expression in
local coordinates x1, ..., xd:

∫

M

f(p)dvg(p) =

∫

ϕ(U)

|g(x)| 12 (f ◦ ϕ)(x)dx, (6)

where |g(x)| is the determinant of the components of g expressed in the
local coordinates x1, ..., xd. Let B(r) be the ball of radius r in Up1

, i.e.,
B(r) = exp−1

p1
(BM(p1, r)). We have:

∫

M

fn,K(p)dvg(p) =

∫

B(r)

1

rd

1

θp1
(expp1

(x))
K

(‖x‖2

r

)

|g(x)| 12 dx (7)

=

∫

B(r)

1

rd
K

(‖x‖2

r

)

dx (8)

= 1. (9)

The kernels involved in kernel density estimators in the Euclidean case are
centered on the observations (Akaike, 1954; Parzen, 1962; Rosenblatt, 1956).
Provided the bandwidth is small enough, this property is preserved by the
estimator defined by Eq. (1) in the following sense. In fact, the concept of
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mean is to be replaced with the one of intrinsic mean. An intrinsic mean of
a probability measure µ on M may be defined as being a minimizer of the
energy functional

F (p) =

∫

M

d2
g(q, p)dµ(q). (10)

This definition is used in Bhattacharya and Patrangenaru (2002, 2003) for
instance, while in (Corcuera and Kendall, 1999; Oller and Corcuera, 1995),
the authors mainly consider those points p ∈ M satisfying the criticality
condition:

∫

Tp(M)

uµ̃(du) = 0, (11)

where µ̃ is a probability measure on Tp(M) which is mapped onto µ by the
exponential map at p. Naturally, being a critical point is a weaker concept
than being an intrinsic mean. Intrinsic means are also named centers of mass
(Kobayashi and Nomizu, 1969; Karcher, 1977; Emery and Mokobodzki, 1991)
or Riemannian barycenters (Oller and Corcuera, 1995) as well as Karcher
means (Le, 1998) and Frechet expectations (Pennec and Ayache, 1998).

Let G2
pM be the set of 2-dimensional subspaces of Tp(M). We denote by

K : ∪p∈MG2
pM → R the sectional curvature of M (Kobayashi and Nomizu,

1969, Vol. I p. 202).

Proposition 2.2 Let q be an arbitrary point of M . Let δ = supK be the
supremum of the sectional curvatures in M . Let µ be a probability measure
on M , absolutely continuous w.r.t. the Riemannian volume measure, and
with a density fq(p) defined by

fq(p) =
1

rd

1

θq(p)
K

(

dg(p, q)

r

)

,

where r < min{ injg(M)

2
, π

4
√

δ
}, and where we set π

4
√

δ
= +∞ when δ ≤ 0 .

Then q is an intrinsic mean of µ.

The proof uses the following two propositions, extracted from (Chavel, 1993,
p. 337) who follows Karcher (1977) in a study of the center of mass of a
probability measure on a Riemannian manifold.

Proposition 2.3 Let M be a complete Riemannian manifold. Assume K <
δ. Let B be a weakly-convex subset of M with diam(B) < π/2

√
δ. Then the

energy functional F has a unique minimum p in B.
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Proposition 2.4 Let M be a complete Riemannian manifold. Assume K <
δ. Let B = BM(p0, r) where r < min{ injg(M)

2
, π

4
√

δ
}. Then for p ∈ B we have

|gradF |(p) ≥ dg(p, p)C(r, δ),

where C(r, δ) is a strictly positive constant depending on r and on δ.

Proof of Proposition 2.2:
By considering the exponential chart (Uq, exp−1

q ) at q with normal coordinates
x1, ..., xd, it is easily seen that

∫

Tq(M)

xµ̃(dx) = 0.

Thus q is a critical point of the energy functional F . Since r < min{ injg(M)

2
, π

4
√

δ
},

we also have r < min{ injg(M)

2
, π

2
√

δ
}, and under this condition, BM(q, r) is

strongly convex. Thus by Proposition 2.3 and Proposition 2.4, q is the unique
minimizer of F . �

3 Consistency

We now turn on to the consistency of fn,K . Convergence is considered in
L2(M).

Theorem 3.1 Suppose f is a two-times differentiable probability density on
M with bounded second covariant derivative. Let fn,K be the density estima-
tor defined by Eq. (1) with the bandwidth r satisfying the condition of Eq. (2).
Then there exists a constant Cf such that

Ef‖fn,K − f‖2
L2(M) ≤ Cf

(

1

nrd
+ r4

)

.

Consequently, for r ∼ n− 1

d+4 we have Ef‖fn,K − f‖2
L2(M) = O(n− 4

d+4 ).

The proof uses the usual decomposition of Ef‖fn,K − f‖2
L2(M) in terms of

integrated squared bias and variance (Van der Vaart, 1998), the upper bounds
of which are stated in the next two lemmas.

Lemma 3.2 Let f be a probability density on M and fn,K its estimator, both
of which fulfill conditions in Theorem 3.1. Then there exists a constant Cb

such that
∫

M

(Effn,K(p) − f(p))2 dvg(p) ≤ Cbr
4.
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Proof:

The pointwise bias b(p) = Effn,K(p) − f(p) may be expressed as

b(p) =

∫

BM (p,r)

1

rd
K

(

dg(q, p)

r

)(

1

θq(p)
f(q) − 1

θp(q)
f(p)

)

dvq(q)

=

∫

BM (p,r)

1

rd

1

θp(q)
K

(

dg(q, p)

r

)

(f(q) − f(p)) dvg(q).

We shall now take a covariant Taylor expansion of f(q) around p. The
Einstein summation convention is used in the following. In geodesic normal
coordinates x1, ..., xd at p, we have

f(x) = f(0) + (∇f(x))i (0)xi + R2(p, x),

where R2(p, x) is the remainder. Since f has bounded second order covariant
derivative by assumption, the remainder is bounded above by some constant
depending on p, which in turn is uniformly bounded in p since M is compact.
Consequently, there exists a constant CR such that for all p ∈ M and x ∈
B(r) ⊂ Tp(M), |R2(p, x)| ≤ CR‖x‖2. Then it follows that

b(p) =

∫

B(r)

1

rd
K

(‖x‖
r

)

R2(p, x)dx,

since K(‖x‖) has a null mean (on R
d) by assumption. Then for all p ∈ M

|b(p)| ≤
∫

B(r)

1

rd
K

(‖x‖
r

)

CR‖x‖2dx

=

(
∫

B(1)

‖y‖2K (‖y‖) dy

)

CRr2,

from which it follows that
∫

M

b2(p)dvg(p) ≤ C2
R

(
∫

B(1)

‖y‖2K (‖y‖) dy

)2

V ol(M)r4,

where V ol(M) is the volume of M defined by V ol(M) =
∫

M
dvg(p). �

Lemma 3.3 Let f be a probability density on M and fn,K its estimator, both
of which fulfill conditions in Theorem 3.1. Then there exists a constant Cv

such that
∫

M

Varffn,K(p)dvg(p) ≤ Cv

1

nrd
.
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Proof:

Varffn,K(p) ≤ 1

nr2d
Ef

1

θ2
X1

(p)
K2

(

dg(p,X1)

r

)

=
1

nr2d

∫

M

1

θ2
q(p)

K2

(

dg(p, q)

r

)

f(q)dvg(q).

Integrating both sides over M , and denoting
∫

M
Varffn,K(p)dvg(p) by IV

yields

IV ≤
∫

M

1

nr2d

∫

M

1

θ2
q(p)

K2

(

dg(p, q)

r

)

f(q)dvg(q)dvg(p)

=
1

nr2d

∫

M

f(q)

∫

M

1

θ2
q(p)

K2

(

dg(p, q)

r

)

dvg(p)dvg(q).

The integral over p is bounded above by K2(0)
∫

Bq(M,r)
1

θ2
q(p)

dvg(p). Let

Cg(q) = supBM (q,r0) θ−1
q (p) and let Cg = supM Cg(q). Now this integral is

bounded above by K2(0)Cg

∫

Bq(M,r)
1

θq(p)
dvg(p) = K2(0)Cgr

dωd, where ωd is

the volume of the unit d-dimensional Euclidean sphere. It then follows that

∫

M

Varffn,K(p)dvg(p) ≤ CgωdK
2(0)

1

nrd
,

which completes the proof of the lemma.�
Proof of Theorem 3.1:

Write

Ef‖fn,K − f‖2
L2(M) =

∫

M

(Effn,K(p) − f(p))2 dvg(p) +

∫

M

Varffn,K(p)dvg(p),

and use the above two lemmas for the upper bound. The last assertion is
immediate. �

4 Concluding Remarks

An inspection of the proof in Lemma 3.2 shows that the rate obtained in
Theorem 3.1 could be improved under additional regularity assumptions on
the density f together with nullity conditions on the moments of the kernel up
to a given order. The advanced argument is the same as Van der Vaart (1998)
for kernel density estimation on the real line. More precisely, suppose f is
s times differentiable with bounded s-th covariant derivative. Furthermore,
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suppose that K is such that
∫

Rd xIK(‖x‖)dx = 0, for all multi-indices I
of length |I| < s and such that

∫

Rd ‖x‖sK(‖x‖)dx < ∞, where we have
let xI = (x1)i1 ...(xd)id whenever I = (i1, ..., id). Then the upper bound in
Lemma 3.2 becomes at the order of r2s, and the rate in Theorem 3.1 becomes

O(n− 2s
d+2s ), for r ∼ n− 1

d+2s , which equals the rate obtained in Hendriks (1990)
for density estimation using Fourier series.
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