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A methodology is presented for retrieving phytoplankton chlorophyll-a concentration from space. The
data to be inverted, namely, vectors of top-of-atmosphere reflectance in the solar spectrum, are treated
as explanatory variables conditioned by angular geometry. This approach leads to a continuum of inverse
problems, i.e., a collection of similar inverse problems continuously indexed by the angular variables. The
resolution of the continuum of inverse problems is studied from the least-squares viewpoint and yields a
solution expressed as a function field over the set of permitted values for the angular variables, i.e., a map
defined on that set and valued in a subspace of a function space. The function fields of interest, for reasons
of approximation theory, are those valued in nested sequences of subspaces, such as ridge function
approximation spaces, the union of which is dense. Ridge function fields constructed on synthetic yet
realistic data for case I waters handle well situations of both weakly and strongly absorbing aerosols, and
they are robust to noise, showing improvement in accuracy compared with classic inversion techniques.
The methodology is applied to actual imagery from the Sea-Viewing Wide Field-of-View Sensor (SeaW-
iFS); noise in the data are taken into account. The chlorophyll-a concentration obtained with the function
field methodology differs from that obtained by use of the standard SeaWiFS algorithm by 15.7% on
average. The results empirically validate the underlying hypothesis that the inversion is solved in a
least-squares sense. They also show that large levels of noise can be managed if the noise distribution is
known or estimated. © 2006 Optical Society of America
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1. Introduction

Standard algorithms for retrieval of phytoplankton
chlorophyll-a concentration from space1–7 attempt to
correct as accurately as possible the influence of the at-
mosphere and the surface on the top-of-atmosphere re-
flectance in the visible. The problem is difficult because
only 10% of the signal measured at the ocean-color
wavelengths (i.e., the useful signal) may originate
from the water body.1,2 The procedure consists of (1)

estimating the aerosol reflectance in the red and near
infrared where the ocean can be considered black
(i.e., totally absorbing) and (2) extrapolating the es-
timated aerosol reflectance to shorter wavelengths.
The retrieved water reflectance is then related to
chlorophyll-a concentration by use of a bio-optical
model that is semianalytical8,9 or empirical.10 This
approach has been successful, and it is employed in
the operational processing of data from most satellite
ocean-color sensors. In coastal regions ��2% of the
oceans), however, the assumption of null ocean re-
flectance in the red and near infrared does not hold,11

and improvements to the standard algorithms have
been proposed. These improvements are based on
assumptions of spatial homogeneity for the spectral
ratio of the aerosol and water reflectance in the red
and near infrared12 or for the aerosol type.13

Other algorithms14–20 attempt to determine simulta-
neously aerosol properties and chlorophyll-a concentra-
tion. Through systematic variation of candidate aerosol
models, phytoplankton scattering, chlorophyll-a concen-
tration, and aerosol optical thickness, a best fit to the
spectral top-of-atmosphere reflectance (visible and near
infrared) is obtained in an iterative manner. The advan-
tage of this approach, compared with the standard, two-

When this research was performed, B. Pelletier (pelletier@math.
univ-montp2.fr) was with the Laboratoire de Mathématiques Ap-
pliquées, Université du Havre, 25 rue Philippe Lebon, 76600 Le
Havre, France. B. Pelletier is now with Institut de Mathématiques
et de Modélisation de Montpelier, UMR CNRS 5149, Equipe de
Probabilités et Statistique, Université Montpelier II, France
F-34095, and Climate Research Division, Scripps Institution of
Oceanography, La Jolla, California 92037. R. Frouin
(rfrouin@ucsd.edu) is with Climate Research Division, Scripps In-
stitution of Oceanography, La Jolla, California 92037. B. Pelletier’s
e-mail address is pelletier@math.univ-montp2.fr.

Received 29 March 2005; revised 14 September 2005; accepted
21 September 2005.

0003-6935/06/040784-15$15.00/0
© 2006 Optical Society of America

784 APPLIED OPTICS � Vol. 45, No. 4 � 1 February 2006



step approach, resides in its capability to handle both
weakly and strongly absorbing aerosols.19,20 A drawback
is that convergence may not be achieved immediately in
some cases, making it impractical to process large
amounts of satellite data. The approach is also limited by
difficulty in differentiating between aerosol absorption
and water constituents such as yellow substances, and
the result may be noisy.

The two types of algorithm described above are
fairly complicated. They require large lookup tables
of aerosol optical properties or aerosol radiance.
These tables are used internally as the atmospheric
correction (standard procedure or nonlinear optimi-
zation) is effected. It may be possible to accomplish
and speed up the search for the proper geophysical
variables or to perform a mapping between top-of-
atmosphere reflectance and aerosol properties by use
of nonlinear modeling tools (e.g., artificial neural net-
works).21,22 Alternatively, nonlinear regression tech-
niques may be used to perform a direct mapping
between top-of-atmosphere reflectance and geophysi-
cal variables. This approach has been used with some
success in retrieving concentrations of phytoplank-
ton chlorophyll-a, dissolved organic matter, and
suspended sediments23–25 but from spectral marine
reflectance. Working with top-of atmosphere reflec-
tance instead of marine reflectance (the information
obtained after atmospheric correction) involves a dif-
ferent kind of complexity linked to the strong variation
of the former with angular geometry. Owing to the
embedded spectral and angular variability, the uncer-
tainty attached to the retrieved value may be signifi-
cantly larger. Diffuse marine reflectance is much more
isotropic, at least over the range of angles used in
remote sensing.26

The problem of retrieving the chlorophyll-a concen-
tration from top-of-atmosphere reflectance in a re-
gression setting may be introduced as follows: Let y
be the chlorophyll-a concentration, let t be the vector
of angular variables that characterize the observa-
tion process (Sun zenith angle, view zenith angle, and
relative azimuth angle), let z be a vector of other
parameters influencing the radiative transfer in the
ocean–atmosphere system (e.g., atmospheric param-
eters, surface parameters), and let x be a vector of
reflectance at d wavelengths related to t, y, and z by

x � F�t, y, z�, (1)

where F is the radiative transfer map. Consider a
statistical framework in which the reflectance is mea-
sured with error such that, instead of x, the available
datum is the vector

x̃ � x � �̃, (2)

where �̃ is a random vector of null mean and finite
variance representing an additive noise. Note that
the properties of �̃ are left completely unspecified in
this statement; in particular, �̃ may be correlated
with x. Given a pair �x̃, t�, for which t is assumed to

be measured accurately, the problem at hand is to
provide a prediction ŷ�x̃, t� of y.

One classic approach is to consider the prediction of
y with mimimum mean-squared error, which is the
conditional mean ��y�x̃, t� of y given x̃ and t, i.e.,
when y is considered a function, the regression func-
tion of y on x̃ and t. This proves useful under the
assumption that the conditional distribution of y
given x̃ and t is sufficiently concentrated about its
mean value, which may be checked empirically after
a model has been fitted. Note that ��y�x̃, t� depends
on the probability distribution of the noise �̃. So in
this setting one obtains the prediction of y by evalu-
ating the regression function at �x̃, t�. The point is
that map F in Eq. (1), which involves integrodiffer-
ential operators, is far too complex for an analytical
expression of the regression function to be derived.
One alternative approach is to generate a statisti-
cally significant data set that embeds the major phys-
ics of the problem, using Eq. (1), to assume a plausible
noise distribution, and next to fit a model to this data.
This settles the retrieval problem in the context of
regression estimation, leading to a large class of mod-
els expressed as follows:

y � r�x̃, t� � ��x̃, t��, (3)

where r and � are the regression and variance func-
tions, respectively, and where � is independent of
x̃ and t, with ���� � 0 and Var��� � 1.

This point of view is general and presents some
drawbacks, however. Clearly t is not informative
with respect to y, and only x contains explanatory
variables. It turns out that the angular variables in t
act as conditioning variables in the sense that they
influence the relationships between the chlorophyll-a
concentration and the reflectance. For instance, if xt
denotes a reflectance acquired in observation geom-
etry t, then y can be predicted independently from
measurements of xt1

as well as of xt2
, for some obser-

vation geometries t1 � t2. Naturally, there exist ob-
servation geometries that are less favorable than
others, e.g., geometries that yield glitter and geome-
tries that correspond to large Sun and view zenith
angles, where the atmosphere contribution becomes
predominant in the measured signal. Another fact is
that x and t are correlated per se, inasmuch as the
former depends on the latter by means of radiative
transfer map F. Correlations between regressors is a
common issue in multivariate regression problems
that may worsen performance, especially in the case
of nonlinear cross dependencies that are difficult to
handle.27

In this paper, we introduce a novel statement of the
retrieval problem that emphasizes the separation of
the angular variables from the reflectance. The prob-
lem is formulated as a collection indexed by t of sim-
ilar inverse problems that we propose to solve in a
regression context and under the constraint of conti-
nuity of the solutions with respect to t. The underly-
ing idea is to attach to each t, and continuously in t,

1 February 2006 � Vol. 45, No. 4 � APPLIED OPTICS 785



a regression model that provides one with a predic-
tion of y. This leads one to express the solution as a
function field over the set T of permitted values for
the angular variables, i.e., as a map defined on T and
valued in some class � of functions of x, which rep-
resents the model space for the regression functions
of y on xt. As no particular shape of regression func-
tions is expected, we focus in this paper mainly on
function fields valued in the class spanned by linear
combinations of shifted ridge functions, as they gen-
erate a nested sequence of function sets, the union of
which is dense,28,29 and possess good approximation
properties.30–33 The density of the set spanned by
functions of the ridge form is an important property,
as, roughly speaking, it expresses the fact that this set
entirely fills the ambient space of continuous functions
of x. So, for each continuous function f of x, one may
find a linear combination of ridge functions that is
arbitrarily close to f. Furthermore, a similar density
property holds, in suitable spaces, for function fields
valued in that set spanned by ridge functions.34 How-
ever, if ridge functions are emphasized in this paper,
the proposed methodology remains general and may
easily be adapted to other choices of the class �.

The paper is organized as follows: In Section 2 the
basics of approximation by ridge functions and of func-
tion fields are first presented. The utilization of ridge
function fields in a regression setting is then described.
In Section 3, procedures to retrieve chlorophyll-a con-
centration from space by use of ridge function fields are
detailed. The performance of the modeling is examined
with synthetic data, including a detailed analysis of
how performance varies as a function of the geophysi-
cal variables and noise distribution. In Section 4 the
methodology is applied to Sea-Viewing Wide Field-of-
View Sensor (SeaWiFS) data, and the results are com-
pared with those from the standard SeaWiFS
processing algorithm. Finally, in Section 5 a summary
of the findings is given, as well as a perspective for
future work.

2. Ridge Function Fields

A. Definitions

A ridge function on some set X � �d is a function of
the form h�a · x�, where h is a function on �, where
a, x � �d, and where a · x is the standard inner
product of �d. A ridge function approximation refers
to an approximation by linear combinations of n ridge
functions for some integer n, i.e., by functions of the
form

f�x� � �
i�1

n

cih�ai · x�. (4)

A slight variant is an approximation by linear com-
binations of shifted ridge functions of the form

f�x� � �
i�1

n

cih�ai · x � bi�, (5)

where the scalars bi are the shifts. Function h is
called the generator function, vectors ai are called the
directions, and scalars ci are the coefficients of expan-
sion. ai, bi, and ci constitute the free parameters of f,
summarized by parameter vector �n, taking values in
the set �n � 	i�1

n �d 
 � 
 �. Note that one may also
allow the generator function to vary in some subset of
����, but this setting is not considered herein. Func-
tion f of the form given by Eq. (2), which corresponds
to a given �n, will also be denoted f�.; �n�. When �n

varies in all �n, the functions f�.; �n� span a set of
continuous functions on X that are denoted �n. Sets
�n and �n are generally not homeomorphic, for their
elements are generally not in one-to-one correspon-
dance, but there is the continuous surjection
in:�n → �n, carrying each �n to the function f�.; �n�.
Also useful is the set � � �n�n. It is known that �
is dense in ��X�, i.e., its closure �̄ � ��X� (see Refs.
28 and 29). Additional materials on ridge function
approximations may be found in the survey paper by
Light35 and in Refs. 30–33.

Now let X be an open subset of �d and let ��X� be the
space of continuous real-valued functions on X with
the topology of uniform convergence on compact sets.
Let T be a compact subset of �p. Recall that a set S is
said to be compact if every open covering of S has a
finite subcovering and that the compact subsets of �p

are its closed and bounded subsets. A function field
over T is an application �:T → ��X�. If � is continuous,
then the field is said to be continuous, and the set of
all continuous function fields over T is denoted ��X�T.
For all t � T, ��t� is the function carrying each
x � X to the scalar ��t��x�. For X and T as above,
there is the homeomorphism ��X 
 T� →� ��X�T. By
this homeomorphism, there corresponds continu-
ously to each � � ��X�T a unique map �* � ��X

 T� and conversely. Maps � and �* are such that
�*�x, t� � ��t��x� for all x � X and t � T.

One may define a ridge function field over T simi-
larly by replacing ��X� with �. To compute the value
of a ridge function field � � �T at some point x and t,
an explicit representation of � is needed. Consider the
representation of elements of �n

T for some fixed in-
teger n. As the functions in �n are parameterized by
vectors in �n, it is natural to seek a representation of
� as a continuous map �:T → �n, i.e., such that
� � in � �. Unfortunately the existence of such a con-
tinuous �:T → �n for each (continuous) � � �n

T is not
ensured because �n is not homeomorphic to �n. How-
ever, it is shown in Ref. 34 that the set of all contin-
uous ridge function fields of the form in � �, with �
continuous, is dense in ��X�T. For each element � in
this set, its associated map �* � ��X 
 T� is ex-
pressed more conveniently as

���x, t� � �
i�1

n

ci�t�h�ai�t� · x � bi�t��, (6)

where bi and ci are continuous real-valued functions
of t and where ai are continuous vector-valued func-
tions of t.
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The process by which an arbitrary function field
�� � ��X�T is approximated by a ridge function field
that satisfies Eq. (6) may be described as follows: Let
ei,t�x� � h�ai�t� · x � bi�t��. These are basis functions
that span at most an n-dimensional vector space
Et � ��X�. Vector spaces Et constitute a collection of
approximation spaces for the collection of functions
���t� � ��X�; i.e., each ���t� is approximated by an ele-
ment of Et. By varying the directions and the shifts,
one seeks a collection of Et such that, for all t, Et

contains a good (in some sense) approximation to ���t�,
all of this being performed under the constraint of
continuity with respect to t.

Note that directions ai and shifts bi in Eq. (6) may
be constants that do not depend on t. In this impor-
tant special case, the collection of approximation
spaces reduces to a single approximation space, com-
mon to all t, that is spanned by functions of the form
h�ai · x � bi�. This leads to ridge function fields � such
that

�*�x, t� � �
i�1

n

ci�t�h�ai · x � bi�, (7)

and the set of all ridge function fields satisfying this
equation is also dense in ��X�T.

B. Regression

Let � � 	�x̃i, ti, yi; i � 1, . . . , N
 be a sample of N
independent and identically distributed observations
drawn according to Eqs. (1) and (2), i.e., such that, for
all i, there have been outcomes zi and �̃i of z and �̃
with

x̃i � F�ti, yi, zi� � �̃i. (8)

Denote by r�t�: x̃ → r�t��x̃� � � the regression func-
tion of y on x̃ acquired in geometry t. With this no-
tation, map t → r�t� is a function field over T. We
consider the estimation of this field of regression
functions by ridge function field � introduced above,
based on the sample �. The statistical model is ex-
pressed as

yi � ��ti��x̃i� � �i, (9)

where �i are independent random variables of null
mean and finite variance. Once this model is adjusted
to �, the prediction ŷ�x̃*, t*�, for a new measured pair
�x̃*, t*� is taken to be ŷ�x̃*, t*� � ��t*��x̃*�. Practi-
cally, we take � � ��n�T for some integer n to be se-
lected from the data, such that the statistical model
may be rewritten as

yi � �*�x̃i, ti� � �i (10)

� �
k�1

n

ck�ti�h�ak�ti� · x̃i � bk�ti�� � �i. (11)

Note that, contrary to the general regression model in
Eq. (3), the above model involves a special kind of
interaction between the noisy reflectance �x̃� and the
angular variables �t�.

The free parameters in the above model are the
vector-valued functions ak�t� and the real-valued
functions bk�t� and ck�t�, plus eventually integer n.
Statistical models indexed by infinite-dimensional
parameters are called semiparametric models. With-
out constraints on the functional parameters, these
models are actually too general, and an unrestricted
nonparametric estimation of their parameters may
not be possible, so that one generally imposes restric-
tions such as that they belong to some given para-
metric model set or that they are nonparametric but
smooth. The latter form of restriction is commonly
used and fairly efficient, and we describe it now. It
consists in expanding the functional parameters on
some set 	1�t�, . . . , K�t�
 of basis functions of t while
penalizing the roughness of the curve during the fit of
the model. The functional parameters take the form
�k�1

K �kk�t�, where �k are the coefficients of the ex-
pansion, and their roughness is controlled by some
functional, typically the integrated squared second de-
rivative. Using this representation of the functional pa-
rameters, one may fit a ridge function field by penalized
least squares. More specifically, let SSE��� � �i�1

N �yi

� ��ti��x̃i��2 be the sum of the squared errors for � on
�. The penalized least-squares criterion � to be min-
imized is

� � SSE��� � �k �k
a�

T

��2ak�
2�t� dt

� �k �k
b �

T

��2bk�
2�t� dt

� �k �k
c�

T

��2ck�
2�t� dt, (12)

where the nonnegative coefficients �k
a, �k

b, and �k
c,

called the smoothness parameters, control the trade-
off between goodness of fit and parsimony of the
model, where functional parameters ak, bk, and ck

belong to span 	1�t�, . . . , K�t�
, and where �2 de-
notes the iterated differentiation operator with re-
spect to t. Note that other types of penalty may be
used. For given smoothness parameters, this minimi-
zation problem may be solved by means of standard
minimization techniques. Then the smoothness pa-
rameters have to be selected from the data by use of
model selection criteria, such as cross validation and
generalized cross validation.

It remains to define basis functions 1, . . . , K. Us-
ing spline functions associated with a set of knots
(i.e., points of T) is generally good for this purpose.
Provided that the number of knots is large enough
and that the knots cover the data well, the linear
span of a spline basis leads to very flexible models,
from simple shapes with few degrees of freedom (high
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value of the smoothing parameter) to more-complex
wiggly shapes with numerous degrees of freedom
(low values of the smoothness parameter). As t is of
dimension greater than 1, multidimensional splines
must be used, such as thin plate splines and tensor-
product splines. This completely defines a general
methodology for fitting a function field valued in some
parameterized set of functions, in particular, ridge
function fields. Note that, even if the number of knots
is large, the resultant model is not necessarily of high
complexity, as the overall number of degrees of free-
dom is controlled by the smoothing parameters.

In this work, we adopt another point of view, where
few basis functions are used for the representation of
the functional parameters but with no roughness
penalty, which corresponds to the first kind of res-
triction described above. More specifically, we con-
sider a small number of knots, positioned on a regular
grid covering T, and the basis functions 	k; k
� 1, . . . , K
 associated with multilinear interpola-
tion on this grid, such that the functional parameters
belong to the parametric model set, which is the lin-
ear span of k. This approach is suitable for fitting a
proof-of-concept model, whereas the above methodol-
ogy allows for finer control of the complexity (i.e., the
number of degrees of freedom). Nevertheless, the set
of ridge function fields constructed in this way is
known to span a dense set.34

Multilinear interpolation on �p, p � 1, is a stan-
dard technique for interpolation of multidimensional
data that generalizes linear interpolation on the real
line. Given a set of K fixed points in �p that define a
regular grid on some hypercube D � �p, let f be a
real-valued map on D. Denote by f1, . . . , fK the values
of f on the K points. Note that K is a product of p
integers greater than 2. In multilinear interpolation,
the value of the reconstructed f at some point t � D is
a linear combination of the values of f on the 2p closest
points to t on the grid, where the coefficients of the
linear combination depend on t. By an appropriate
scaling, the general multilinear interpolation proce-
dure may be defined on the interior of the unit cube
�0; 1�p. So assume that t � int ��0; 1�p�, denote by
t1, . . . , t2p the 2p corners of �0; 1�p and by tk

j the jth
component of tk (so k � 1, . . . , 2p and j � 1, . . . , p),
and denote by f1, . . . , f2p the values of f on these cor-
ners. Then the interpolated value f̂�t� of f at t �
�t1, . . . , tp�t is given by

f̂�t� � �
k�1

2p

fk	
j�1

p

�1 ��t j � tk
j��. (13)

When t belongs to boundary ��0; 1�p, t is in the inte-
rior of �0; 1�q for some 1 � q � p. So, to complete the
definition, it suffices to define linear interpolation on
the interval �0; 1�: for t � �0; 1�, we have f̂�t� �
f0�1 � t� � f1t. It may be shown that the resultant
interpolated function on D may be expressed as f̂�t�
� �k�1

K fkk�t�, and the functions k are called the
basis functions associated with multilinear interpo-
lation on the set of K knots. So, given a reduced set of

K fixed knots defining a regular grid covering T, de-
note by �K the set of all such real-valued interpolated
maps, i.e., �k � span	1, . . . , K
. Each element of �K

depends on K parameters. We consider the fitting of
a ridge function field � such that

�*�x, t� � �
k�1

n

ck�t�h�ak�t� · x̃ � bk�t��, (14)

where for all k � 1, . . . , n, ak � �K
d, bk � �K, and

ck � �K, by minimizing the sum of the squared errors
SSE��� on �, without penalty. For notational conve-
nience, the free parameters of the maps ak, bk, and ck

are summarized in a unique vector �, of length �d
� 2�K. As mentioned above, the minimization of
SSE��� with respect to � may be solved by use of
standard minimization methodologies. An iterative
minimization algorithm performing a stochastic gra-
dient descent is described below. Denote by ��n� the
value of the parameter vector at the nth iteration.
One iteration of the algorithm is composed of the
following steps:

1. Draw a sample �x, t, y� in �,
2. Compute the prediction error e��� � y � ��t�

�x�,
3. Update the parameters of � according to

�(n�1) � �(n) � � grad���,

where � is a strictly positive scalar.

The algorithm is iterated until convergence. This
type of algorithm allows one to simulate the noise,
because in practice the data set is obtained from mul-
tiple runs of a radiative transfer code. In this case,
given noise distribution p�̃ , step 1 of the algorithm
above comprises the following steps:

1(a). Draw a sample �x, t, y� in �,
1(b). Draw a noise sample �̃ according to p�̃ and

compute the noisy reflectance x̃ � x � �̃.

3. Retrieval of Chlorophyll-a Concentration

A. Simulated Data Sets

The top-of-atmosphere reflectance in the eight Sea-
WiFS spectral bands, centered at 410, 490, 510, 555,
670, 765, and 865 nm, has been simulated by use of
the radiative transfer code of Ref. 36 based on the
modeling approach, i.e., signal decomposition, of Ref.
37. This decomposition takes into account the essen-
tial physics of the problem, namely, scattering by
molecules, scattering and absorption by aerosols,
molecule–aerosol interactions, reflection by the sur-
face, molecule–surface interactions, aerosol–surface
interactions, and backscattering by whitecaps and
the water body. Absorption by ozone, oxygen, and
water vapor is neglected in the simulations, as its
effect on the top-of-atmosphere reflectance can be re-
moved easily, either by a simple correction factor (for
ozone and water vapor)38 or by independent correc-
tions for molecule and aerosol components (for oxy-
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gen).39 This assumes that absorption by ozone and
water vapor can be decoupled from scattering by mol-
ecules and aerosols. The justification is that ozone is
located high in the atmosphere where molecules are
rarified; i.e., solar radiation goes through the ozone
layer pratically without scattering. For water vapor,
absorption occurs at wavelengths where scattering by
molecules is small and scattering by aerosols domi-
nates. The scattered radiation field results essen-
tially from primary and secondary scattering events,
and, because scattering by aerosols is mostly forward,
the photons follow a path that does not deviate much
from the direct path, i.e., Sun-to-surface and surface-
to-satellite.

The simulations have been performed for a wide
range of Sun and view angles, aerosol types and
amounts, and wind speeds. Sun and view zenith an-
gles were varied randomly from 0 to 60°, the relative
azimuth angle from 0 to 180°, wind speed from
0 to 15 ms�1, and aerosol optical thickness at 550 nm
from 0.01 to 0.5. For larger Sun and view zenith
angles, the degree of accuracy of the radiative trans-
fer model becomes unacceptable. Various aerosol
mixtures have been considered, from purely conti-
nental to purely maritime, from purely maritime to
purely urban, and from purely continental to purely
urban (i.e., three types of mixture). The water body
has been assumed to be Lambertian, and its reflec-
tance modeled according to Ref. 40 for chlorophyll-a
concentrations of 0 to 30 mg m�3. This model is valid
only for case I (open oceans) waters. Case II waters
were considered in the simulations. Whitecaps have
also been assumed to behave as Lambertian bodies,
with a reflectance in the visible and a fractional cov-
erage modeled according to Ref. 41. The spectral de-
pendence of whitecap reflectance was parameterized
following Ref. 42. The Sun glint reflectance was mod-
eled according to Ref. 43, assuming isotropic slope
distribution. Note that the inverse problem would not
be more complicated, or more difficult to solve if the
bidirectional characteristics of the water-body reflec-
tance were taken into account, because a unique sta-
tistical model is attached to each angular geometry.

In practice, the radiative transfer code was run twice
for each case, once with aerosols and a nonblack water
body and once without aerosols and with a black water
body. The difference between the results of the two
runs, i.e., the top-of-atmosphere reflectance corrected
for the effects of molecular scattering, molecule–
surface interactions, and most of Sun glint (hereafter
referred to as corrected reflectance) was used to con-
struct the function fields. All cases with a Sun glint
reflectance above 0.04 were discarded, leaving for each
type of mixture �20,000 instances of the corrected
reflectance vector for the analysis.

B. Experimental Designs

The simulated data described above were used to
construct ridge function fields providing predictions
of the chlorophyll-a concentration from the corrected
reflectance. Let us introduce some notation. The sim-

ulated data set, composed of 61,990 samples, will be
denoted �0. Note that this large number of points is
necessary; keep in mind the high dimensionality of
the problem in connection with the curse of dimen-
sionality in regression estimation. Next, �0 has been
randomly split into a data set �e

0 of 40,896 points
used for estimation and a data set �v

0 of 21,094 points
used for validation, i.e., approximately in proportions
of 2�3 and 1�3. To assess the robustness of the fields,
we generated noisy versions of data sets �e

0 and �v
0

with total amounts of noise of 1% and 2%; they will
be denoted �e

1, �v
1, �e

2, and �v
2. The selected noise

scheme is decomposed into a sum of correlated and
uncorrelated components according to

x̃ � x � �cx � ��1
ucx1, . . . , �8

ucx8�t, (15)

In Eq. (15), x̃ is a noisy version of reflectance vector
x, and �c, �1

nc, . . . , �8
nc are random variables uni-

formly distributed on the interval ����200; ��200�,
where � is the total amount of noise, in percent. To
summarize the notation used for data sets and mod-
els, a superscript stands for a total amount of noise,
in percent, whereas a subscript stands for the type of
data set.

The ridge function fields that we consider satisfy
Eq. (14) and are defined over the set T of allowable
values for the cosines of the angular variables; i.e., we
have

t � �cos �s, cos �v, cos ��t, (16)

T � �1�2; 1� 
 �1�2; 1� 
 ��1; 1�. (17)

Choosing to work with the cosines of the angular

Table 1. Statistics for Fields �0, �1, and �2 Evaluated for Data Sets De
0,

Dv
0, De

1, Dv
1, De

2, and Dv
2

Data set Statistic �0 �1 �2

De
0 RMSE 0.450 0.554 0.748

bln �0.000 0.001 0.004
RMSEln 0.040 0.049 0.062

Dv
0 RMSE 0.502 0.641 0.812

bln �0.000 0.000 0.003
RMSEln 0.043 0.053 0.065

De
1 RMSE 1.642 0.899 0.903

bln �0.000 0.001 0.004
RMSEln 0.135 0.086 0.087

Dv
1 RMSE 1.739 1.010 0.973

bln �0.001 0.000 0.002
RMSEln 0.139 0.090 0.090

De
2 RMSE 4.255 1.628 1.284

bln 0.003 0.002 0.004
RMSEln 0.264 0.150 0.137

Dv
2 RMSE 4.908 1.740 1.375

bln 0.002 0.000 0.002
RMSEln 0.270 0.156 0.143
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variables is somewhat arbitrary but motivated by the
fact that radiation transfer is expressed in terms of
trigonometric functions of angular variables. The
knots for the functional parameters are the elements
of 	1�2; 1
 
 	1�2; 1
 
 	�1; 0; 1
. This defines a
coarse regular 2 
 2 
 3 grid covering T, thus limit-
ing the number of degrees of freedom, as discussed
above. So the functional parameters are valued in the
linear span of the basis functions associated with
multilinear interpolation on this reduced set of knots.
Generator function h has been taken as the hyper-
bolic tangent, a popular choice in ridge function ap-
proximation.

Input vector x is composed of the top-of-atmos-
phere reflectance in the eight SeaWiFS spectral
bands, corrected for molecular scattering effects,
molecule–surface interactions, and Sun glint effects
as detailed in Subsection 3.A. Output variable y is the
logarithm of the chlorophyll-a concentration.

Three ridge function fields, further denoted �0,
�1, and �2, were fitted based on the data in �0 by the

stochastic minimization algorithm described above.
Similarly to data set notation, a superscript stands
for the total amount of noise, in percent, that has
been added during the execution of the algorithm, as
detailed above. The noise was generated according to
Eq. (15).

The number of basis functions of the fields is taken
to be n � 10. We determined it empirically by fitting
fields for different values of n, starting at a low n. The
selected field corresponds to the smallest value of n
such that, when n is increased by 1, no noticeable
change in the performance of the estimation and val-
idation sets is observed.

C. Results

1. Performance Statistics
We considered the following statistics in evaluating
the performance: the root-mean-square error (RMSE),
the bias in natural logarithm �bln�, and the root-mean-
square error in natural logarithm �RMSEln�, which

Fig. 1. Estimated versus expected [Chl-a] for fields �0, �1, and �2 for samples in data sets �e
0, �e

1, and �e
2.
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corresponds, up to a second-order term, to the root-
mean-square relative error (in fractional units). We
define

RMSE � � 1
N �

i�1

N

([Cĥl-a]i � [Chl-a]i)
21�2

, (18)

bln �
1
N �

i�1

N

(ln[Cĥl-a]i � ln[Chl-a]i), (19)

RMSEln � � 1
N �

i�1

N

(ln[Cĥl-a]i � ln[Chl-a]i)
21�2

,

(20)

where [Chl-a] and [Cĥl-a] are, respectively, the ex-
pected and estimated chlorophyll-a concentrations, in
units of milligrams per cubic meter. The values taken
by these statistics for the different ridge function
fields are listed in Table 1.

The statistics for �� take comparable values in esti-
mation and validation sets �e

� and �v
�, which shows

the good generalization performance of the fields.
Note that this occurs for all � � 0, 1, 2. As expected,
the best [Chl-a] retrieval is achieved by the field con-
structed on nonnoisy data ��0� and applied to non-
noisy samples ��e

0 and ��
0�, for which RMSEln is of

the order of 4%. However, �0 is relatively sensitive to

the presence of noise in the reflectance measure-
ments, as RMSEln is increased to �14% and �27%
when reflectances are corrupted by 1% and 2% noise,
respectively. This ratio is improved when noise in the
fitting of the field is accounted for. For instance,
RMSEln of �1 decreases to less than 9% in �e

1 and
�v

1, with a slight increase to �5% in the case of
nonnoisy reflectances, and field �2 can process sam-
ples with 2% noise slightly better than �1 and with
comparable performance for samples with 0% or 1%
noise. It appears that �1 achieves a reasonable com-
promise between accuracy and robustness. It may be
noted also that the addition of noise does not intro-
duce a bias. In fact, [Chl-a] retrievals are almost
unbiased, with a bias not exceeding 0.4% in all cases.

Plots of estimated versus expected [Chl-a] are given in
Fig. 1. The improvement in robustness on passage from
�0 to �1 and �2 can be seen from this figure. See, for
example, how the points concentrate on the 45° line
from the left to right at the bottom of Fig. 1. It may be
also noted that the [Chl-a] estimation is accurate in
its whole range, i.e., from 0.03 to 30 mg m�3.

2. Analysis of the Residuals
The residual ei for the ith sample is defined by

ei � ŷi � yi

� ln([Cĥl-a]i) � ln�[Chl-a]i�,

Fig. 3. Conditional quantile curves of orders 5%, 25%, 50%, 75%, and 95% (top to bottom) of the residual given the aerosol optical
thickness for field �1 applied to the data set with 0% (left), 1% (middle), and 2% (right) amount of noise.

Fig. 2. Histograms of the residuals for field �1 applied to the data set with 0% (left), 1% (middle), and 2% (right) amount of noise.
Nonparametric smoothed kernel density estimates are superimposed as curves.
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i.e., ei are the errors in natural logarithm. The resid-
uals have an almost null mean, as measured by the
statistic bln. Estimates of the residual distributions
for fields �f

1 and �v
1 applied to data sets ��, for �

� 0, 1, 2, are displayed in Fig. 2. These distributions
are unimodal, with centered mode, and present sy-
metric shapes with respect to 0.

Additional properties are revealed when one looks
at the estimated conditional quantile curves of the
residual, given one geophysical parameter. These
curves provide a statistical understanding of the in-
fluence of one geophysical parameter on the retrieval
error. Roughly speaking, the sample quantile of order
� � �0; 1� of N errors is a point q� such that there are
�N points below q� and �1 � ��N points above q� (the
precise definition has to account for �N not being an
integer). The definition of a conditional quantile pro-
ceeds in the same way, by considering a variable of
the form e|Xg, i.e., e given Xg, where Xg is a geophysi-
cal parameter, say. The conditional quantiles of order
5%, 25%, 50%, 75%, and 95% have been estimated
given (separately) the aerosol optical thickness, the
scattering angle, and the proportion of one aerosol
model in a mixture of two. Conditionally to one geo-
physical parameter, 90% of the residuals are between
q0.05 and q0.95, and 50% of them are between q0.25
and q0.75.

The conditional quantile curves given the aerosol
optical thickness are plotted in Fig. 3 for fields �1 on

data sets ��; � � 0, 1, 2. As shown by the leftmost
figure, the performance is minimally affected by the
aerosol optical thickness in the absence of noise.
When the noise level is increased, the influence of the
aerosol optical thickness becomes more visible: The
spread of the conditional distribution of the residuals
increases with the aerosol optical thickness. This oc-
curs at a rate that grows with the noise level, as
evidenced by the absolute slopes of the curves.

Plots of conditional quantile curves given the scat-
tering angle are displayed in Fig. 4. They show that
the error is slightly larger for lower and higher scat-
tering angles and smaller at intermediate scattering
angles where the aerosol phase function exhibit its
lowest values, i.e., scattering angles for which the
aerosol effect on the top-of-atmosphere reflectance is
generally a minimum.

The performance is minimally affected by the aero-
sol model, as shown by Fig. 5 in plots of the conditional
quantile curves given the proportions of one aerosol
model in a mixture of two. This is an important result
because standard atmospheric algorithms, which ex-
trapolate to the visible aerosol information obtained in
the red and the near infrared, generally fail in the
presence of absorbing aerosols. The fact that informa-
tion from all spectral bands, including the bands in the
blue that are sensitive to aerosol absorption, is pro-
cessed by the function fields certainly explains their

Fig. 4. Conditional quantiles curves of orders 5%, 25%, 50%, 75%, and 95% (top to bottom) of the residual given the scattering angle for
field �1 applied to the data set with 0% (left), 1% (middle), and 2% (right) amount of noise.

Fig. 5. Conditional quantiles curves of orders 5%, 25%, 50%, 75%, and 95% (top to bottom) of the residual given the proportion of one
aerosol model in a mixture of two of types, Continental, Maritime, and Urban. These curves correspond to 1% noisy data.
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good performance when aerosols are strongly absorb-
ing (urban model).

3. Influence of the Noise Structure
As mentioned in Section 1, the regression function of
y on noisy reflectance x̃ acquired in geometry t de-
pends, by definition, on the noise distribution. We
investigated its influence on the theoretical perfor-
mance by varying the proportion of correlated noise
in a mixture of correlated and uncorrelated compo-
nents, i.e., by considering the following family of
noise schemes:

x̃ � x � pc�
cx � �1 � pc���1

ucx1, . . . , �8
ucx8�t, (21)

where x̃ is a noisy version of reflectance x, pc � �0; 1�
is the proportion of correlated noise, and �c,
�1

uc, . . . , �8
uc are random variables following

�����100;��100�, with � the total amount of noise, in per-
cent. This family includes as a special case the noise
scheme defined by Eq. (15) for pc � 1�2. We con-
structed several function fields with pc varying from
0 to 1 in steps of 1�4 and for � equal to 2%,
5%, and 10%. The RMSE in natural logarithm, eval-
uated on �e

0, is plotted in Fig. 6 as a function of pc for
the three levels of �. It appears that the error is
weakly dependent on the noise level when the noise is
purely uncorrelated �pc � 1� and that the error rap-
idly increases with the noise level when the noise is
purely uncorrelated �pc � 0�, to exceed 50% at 10% of
added noise. Also, for a fixed noise level, the error
decreases with pc.

Though in reality the nature of the correlations
between the noise components might be more subtle
and diverse than in the noise scheme considered here,
these results confirm the importance of the noise
structure. It is clear that the performance would ben-

efit from an estimation of the noise distribution and of
its dependency on the geophysical parameters. The
lack of such an estimate may be circumvented by the
use of a strongly uncorrelated noise but at the ex-
pense of a rapid increase in theoretical error.

4. Application to SeaWiFS Imagery

The function field methodology has been applied to
the processing of a typical SeaWiFS image aquired on
day 323 (19 November) of year 2002 above southern
California. Based on the results of the standard Sea-
WiFS processing algorithm (SeaDAS), chlorophyll-a
concentration in the image varies from 0.05 to
5 mg m�3 (i.e., by 2 orders of magnitude), and aerosol
optical thickness from �0.01 to �0.1 at 865 nm. Sur-
face wind is weak everywhere, with a speed less than
5 ms�1, and the viewing zenith angle varies from 20°
to 55°, Sun zenith angle from 51° to 55°, and relative
azimuth angle from 20 to 70 degrees. Owing to this
angular geometry, Sun glint is not present in the
image.

The three function fields ��, � � 0, 1, 2, construc-
ted above were applied to this image, and the [Chl-a]
predictions were compared with the SeaDAS
predictions. Table 2 summarizes the comparison
statistics. There is an important negative mean dif-
ference (above 20%), and the root-mean-square dif-
ferences in natural logarithm �RMSDln� are all
greater than 55%. These discrepancies in [Chl-a] are
explained as being due to differences between the
top-of-atmosphere reflectance measured by SeaWiFS
and computed by the radiative transfer code or,
equivalently, between the respective reflectances cor-
rected for molecular scattering effects, molecule–
surface interactions, and Sun glint; see Subsection
3.A. The differences may be due to several factors,
such as accuracy of the radiative transfer code; the
aerosol models used in the simulations, which for a
given angstrom coefficient may not yield the same
single-scattering albedo and phase function as the
aerosol models used in SeaDAS; and the bio-optical
model. One can quantify these differences, which can
be considered noise in the simulated data, by plug-
ging into the radiative transfer code the SeaDAS es-
timates of [Chl-a] and aerosol parameters and
comparing the SeaWiFS reflectance with the simu-
lated reflectance; this was accomplished for 2000 pix-
els of the image selected randomly from a total of
78,298 pixels, and the results are summarized in Ta-
ble 3. The rms difference between the two types of
reflectance varies from 0.005 at 412 to 0.001 at 865.
Compared with the corrected reflectance, the rms dif-

Fig. 6. RMSE in natural logarithm evaluated in D0 as a function
of the proportion of correlated noise for function fields built with
2%, 5%, and 10% total amount of noise.

Table 2. Application to SeaWiFS Dataa

Statistic �0 �1 �2

RMSD 0.455 0.434 0.416
MDln �1.121 �0.200 �0.275
RMSDln 1.041 0.608 0.549

aComparison statistics with SeaDAS-derived [Chl-a] for fields �v;
� 	 0, 1, 2.

1 February 2006 � Vol. 45, No. 4 � APPLIED OPTICS 793



ference is large, especially at wavelengths above
555 nm, where on average the corrected reflectance is
similar to or less than the rms difference. But the two
types of reflectance are relatively well linearly corre-
lated. Therefore the major part of the differences may
be explained by an affine map of the corrected reflec-
tance. Hence if the noise level is large, it is, con-
ditionally to the corrected reflectance, strongly corre-
lated. The results for the influence of the noise struc-
ture (Subsection 3.D) suggest that such a type of
noise (high level, strongly correlated) might be han-
dled with accuracy by an adequately fitted function
field, i.e., when the appropriate noise scheme is used
during fitting. This possibility was investigated as
described next.

The differences ei between SeaWiFS and simulated
reflectance for the n � 2000 pixels selected randomly
in the image are considered independent samples of
noise and are used to estimate the noise distribution
nonparametrically, i.e., without assuming any spe-
cial parametric form of the distribution. There are
several classic techniques for this purpose, which we
do not review; let us just consider the empirical dis-
tribution, defined by

�n �
1
n �ei

, (22)

where �x is the probability distribution that is degen-

erate at x. This distribution assigns a mass 1�n to
each sample error ei. Compared with a smoothed ker-
nel estimate, it has the advantage of providing a
computationally fast and fairly simple way of gener-
ating noise samples: One observation drawn from �n

is obtained by uniform random selection of one of
the ei.

A function field, further denoted �n, was con-
structed with �n used as the noise distribution during
the execution of the stochastic fitting algorithm. The
performance of �n on �0 is comparable to that of �1,
with bln � �0.005 and RMSEln � 0.069. When they
are applied to the SeaWiFS image, the [Chl-a] pre-
dictions by �n differ from the SeaDAS by 15.7% on
average �RMSDln � 0.157� and are weakly biased,
with an average difference in natural log of �0.019.
The SeaDAS and �n �Chl-a� predictions are strongly
correlated with a correlation coefficient of 0.931
(0.977 when measured in natural logarithm). The
[Chl-a] images are given in Fig. 7. The chlorophyll-a
concentration is predicted by �n with lower values
than by the SeaDAS in the case of high concentration
values, as may also be seen from the histograms in
Fig. 8. Nevertheless, these histograms exhibit similar
shapes, with a corresponding principal mode and a
second lower mode in the upper tail, indicating rela-
tively good agreement between the two distributions.
In fact, most of the differences in chlorophyll distri-
bution are located in the upper and lower parts of the

Table 3. Root-Mean-Square Difference (RMSD) between SeaWiFS and Computed Top-of-Atmosphere Reflectance, Mean of the Corrected
Reflectance for Each SeaWiFS Spectral Band, and Correlation Coefficient (r) between SeaWiFS and Computed Top-of-Atmosphere Reflectance

Parameter


 (nm)

412 443 490 510 555 670 765 865

RMSD 0.0052 0.0037 0.0045 0.0038 0.0013 0.0018 0.0017 0.0010
Mean 0.0139 0.0133 0.0130 0.0097 0.0068 0.0019 0.0009 0.0007
r 0.7683 0.8642 0.7844 0.4265 0.8226 0.8993 0.9276 0.9696

Fig. 7. (Color online) Chlorophyll-a concentration predicted by the SeaDAS and �n. They differ by �16% on average.
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chlorophyll range in the image, as revealed by the
quantile-versus-quantile plot in Fig. 9. In a quantile-
versus quantile plot, the quantiles of one distribution
are plotted versus the quantiles of the other, and thus
a graph close to the y � x line indicates that the two
distributions are similar. The quantiles of orders
5% to 95% in steps of 5% are marked by dashed lines
in Fig. 9, and their values are listed in Table 4. They
take comparable values for orders from 5% to 85%,
indicating good agreement between the two distribu-
tions, so the SeaDAS and �nchlorophyll-a predictions
are similarly distributed in approximately 80% (in
probability) of its range; the differences are located in
the lower (below q0.05) and upper (above q0.85) tails.

These results suggest that large levels of noise may
be handled efficiently by function fields, provided that
the noise distribution on the top-of-atmosphere reflec-
tance is known or estimated. As mentioned above, this
can be achieved by use of measurements of geophysical
variables to compute the top-of-atmosphere reflectance
(with the radiative transfer code used in the function
field construction), but for generalization the data
would have to include the expected range of geophysi-
cal variables and angular geometry. The results also
show that, compared with existing schemes, the meth-
odology has potential for improving the [Chl-a] retriev-
als, in terms of accuracy and robustness, especially in
the presence of absorbing aerosols and for high [Chl-a]
values. Naturally, a more comprehensive assessment
would require evaluation of several images represen-
tative of the various conditions that may be encoun-
tered in the real world. Here, the focus is on theory and
methodology, and only one application example is
given as a demonstration of feasibility.

5. Conclusions and Perspectives

In the ocean-color inversion problem, the collected
information (reflectance) is influenced by some con-
ditioning variables (angular geometry), and this is
the reason why this problem may be defined as being
a collection of similar inverse problems. Embedding
this peculiarity in a regression model, which per-
forms direct mapping between the reflectance and a
geophysical variable such as the chlorophyll-a con-
centration, leads to the setting of function fields. In
this case, function fields may show improvement over

Fig. 8. Histograms of log10([Chl-a]) values estimated by the Sea-
DAS and �n, with a smoothed kernel density estimate superim-
posed. They exhibit similar shapes, with a dominant mode and a
second lower mode in the upper tail.

Fig. 9. Field �n versus SeaDAS quantiles of the log10([Chl-a])
distribution, with a 45° line added. The dashed lines give quantiles
of order 5% to 95% in steps of 5% (see Table 4 for the precise
values). There is good agreement between the two distributions in
the domain that comprises quantiles of orders 5% through 85%,
which represents 80% of the points. So most of the differences are
located in the tails.
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a general multivariate regression technique that uses
explanatory and conditionning variables as covari-
ates, because the correlations between the two types
of variable are accounted for by construction, yet this
possibility remains to be investigated in detail. One
may obtain a continuous field of regression models,
such as the ridge function fields introduced in this
paper, by varying the coefficients of a parametric re-
gression model with respect to the angular variables.
The formalism of function fields is much more gen-
eral, however, as the definition of a function field
valued in a set � of functions does not depend on
some special parameterization of � Thus there is the
possibility of studying and developing appropriate
methodologies for this type of model in an intrinsic
manner, i.e., one that does not depend on the param-
eterization. This is an important perspective, as the
invariance by reparameterization of statistical meth-
odologies has long been recognized as being a desir-
able goal, even if it is generally difficult to reach,
because it requires knowledge of the geometry of the
family of models under consideration, including, at
least, a bijective parameterization. When such a bi-
jection is missing, one may consider instead a given
continuous surjection and study the properties of the
induced function fields. This is the methodology that
we have investigated for fields of ridge functions,
which have been shown to span a dense set. The
density property is interesting in the problem, first
because little is known about the regression function
to be estimated and second because it has not been
proved that a function of the corrected reflectance
may provide an accurate prediction of [Chl-a], i.e.,

that the problem may be solved accurately in a least-
squares sense.

The ridge function fields designed in this study to pre-
dict chlorophyll-a concentrations from corrected reflec-
tance have shown promising theoretical performance.
First, the chlorophyll-a concentration is predicted accu-
rately in the whole range 0.03–30 mg m�3, with rela-
tive rms errors as low as 4% in the absence of noise
and increasing with noise to 14% in the presence of
2% noise. This is a definite improvement with respect
to standard two-step algorithms, which generally ex-
hibit degraded performance at high chlorophyll-a
concentrations. Second, the prediction is fairly inde-
pendent of acrosol type, even for strongly absorbing
aerosols. In such aerosol situations the standard at-
mospheric correction fails, especially in the blue
where the retrieved marine reflectance is too low or
even negative, leading to overestimation of [Chl-a].
Thus the methodology should enable more accurate
estimates of chlorophyll-a concentration, hence pri-
mary production, to be made in dust-contaminated or
polluted oceanic areas. Because the areas involved,
including the coastal zone, tend to be highly produc-
tive, the gain in accuracy would be significant. Third,
[Chl-a] predictions are robust to noise. Yet, and natu-
rally, this robustness is strongly tied to the nature of
the correlations, especially for high noise levels. In-
deed, low levels of noise can be handled efficiently in
the design of a function field by simulation of purely
uncorrelated noise, whereas for larger noise levels an
estimation of the noise distribution might be neces-
sary, as suggested by the application to the SeaWiFS
image. So these theoretical results empirically validate
the underlying assumption according to which this in-
verse problem is solved in a least-squares sense, even
in a noisy case. This implies the existence of a special
kind of geometrical localization of the classes of cor-
rected reflectances that correspond to different [Chl-a]
values: two classes overlap only when they correspond-
ing to close [Chl-a] values, and the classes vary
smoothly with [Chl-a] by continuity of the radiation
transfer map. The noise in the reflectance has the ef-
fect of enlarging these classes and thus of increasing
their overlap and, in turn, the prediction error. Intu-
itively, this effect will be even larger as the noise is
distributed along directions that correspond to a [Chl-
a] gradient, and this probably explains why it has been
found, in the simulations and in the application to the
SeaWiFS image, that there are large but strongly
anisotropic noises that may be handled without a sig-
nificant increase in the prediction error.

The application to a SeaWiFS image has led to
[Chl-a] predictions comparable with the SeaDAS pre-
dictions, i.e., a RMSD of 15.7% and a bias of 1.9%,
when the noise distribution is approximately known,
which we accomplished by analyzing, for a small sub-
set of pixels in the image, the differences between the
SeaWiFS reflectance and simulations from SeaDAS
estimates of [Chl-a] and aerosol parameters. Further
investigations are required for precise determination
of the noise distribution with respect to the radiation

Table 4. Quantiles of Orders 5% to 95% In Steps of 5% of the
Distribution of log10[Chl-a] Predicted by SeaDAS and �n

Order (%)

Predicted
Quantile

SeaDAS �n

5 �0.880 �0.855
10 �0.798 �0.798
15 �0.743 �0.752
20 �0.704 �0.715
25 �0.675 �0.682
30 �0.655 �0.656
35 �0.638 �0.636
40 �0.623 �0.618
45 �0.608 �0.600
50 �0.592 �0.582
55 �0.575 �0.563
60 �0.555 �0.542
65 �0.532 �0.517
70 �0.504 �0.488
75 �0.467 �0.455
80 �0.416 �0.413
85 �0.330 �0.348
90 �0.147 �0.220
95 0.129 0.002
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transfer model and the bio-optical model used in
constructing the function fields. One possibility is to
use concomitant measurements of satellite reflec-
tance and of the intervening atmospheric and oceanic
parameters. Naturally, for robust inferences to be
drawn, the data set needs to be statistically signifi-
cant and representative of real-world variability.
This might not be feasible because of the large num-
ber of parameters involved plus the difficulty in col-
lecting a large amount of in situ data. In this respect,
the plug-in approach represents an interesting alter-
native: It may be applied systematically and indepen-
dently of the radiation transfer code that is used. In
fact, the plug-in approach provides one with an upper
bound on the difference between measured and com-
puted reflectance. So, when it is applied to a signifi-
cant number of samples, the plug-in approach does
not immediately lead to an estimation of the noise
distribution; instead, incomplete information is col-
lected this way. How to account for this kind of
information when one is fitting a regression model
constitutes an interesting statistical perspective.

The demonstration was made on one SeaWiFS im-
age. Other images acquired in various oceanic and
atmospheric situations need to be processed to permit
a definitive conclusion about the practical suitability
of the methodology. In other respects, the methodol-
ogy is fast in application, i.e., well adapted to the
processing of large amounts of satellite data. As ex-
plained above, the methodology developed is rather
general and can easily be adapted to other sets of
models. One can also extend it to the simultaneous
estimation of several, eventually correlated vari-
ables, by designing fields of vector-valued maps. In
optically complex waters, one may attempt to retrieve
not only [Chl-a] but also the concentrations of yellow
substances and inorganic material. In this case the
function field methodology would be interesting un-
der the assumption that the least-squares solution to
the inversion problem matches the required accuracy
for scientific applications. The relevance of this hy-
pothesis would then be tested, as has been done in the
present study for case I waters. Other applications
include the retrieval of spectral marine reflectance as
well as of the spectral optical properties of individual
water constituents.

This research was supported by the National Sci-
ence Foundation under grant OCE-0417748; by the
Japanese Aerospace Exploration Agency; and by the
Scripps Institution of Oceanography, University of
California San Diego, La Jolla.
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