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Summary: Let X be a random variable taking values in a compact Riemannian manifold without
boundary, and let Y be a discrete random variable valued in {0; 1} which represents a classification
label. We introduce a kernel rule for classification on the manifold based on n independent copies
of (X, Y ). Under mild assumptions on the bandwidth sequence, it is shown that this kernel rule is
consistent in the sense that its probability of error converges to the Bayes risk with probability one.

1 Introduction
In many experiments, the intrinsic structure of the collected data is no longer Euclidean;
instead, the observations are points of a given Riemannian manifold. For instance the
sphere is the sample space in axial and directional statistics (Fisher et al., 1993; Mardia
and Jupp, 2000; Watson, 1983). Three-dimensional rotations or rigid transformations are
considered in medical image analysis and high level computer vision (see e.g. Pennec,
2006 and the references therein). Other examples of manifolds encountered in statistical
applications include the Stiefel manifold (i.e., the space of k-frames inRm) and the Grass-
man manifold Gk,m−k (i.e., the space of k-dimensional hyperplanes in Rm) thoroughly
studied by Chikuse (2003), or the manifold of shapes characterized by a corpus of land-
marks (Dryden and Mardia, 1998; Kendall et al., 1999; Le and Kendall, 1993; Mardia
and Patrangenaru, 2005; Small, 1996).

Stimulated by multiple applications, there is presently a growing literature on statisti-
cal inference on manifolds, and on the related topic of manifold learning, i.e., the problem
of inferring a low-dimensional, possibly nonlinear, structure underlying the data. The two
subjects are complementary one to each other, the fact of the matter being that fitting
an appropriate submanifold to the data allows for efficient dimension reduction. On the
other hand, using a nonlinear representation of the data requires the adaptation of the
existing statistical procedures. In this display, when a manifold is given as a sample
space, several results have been obtained, including the estimation of location parameters
(Bhattacharya and Patrangenaru, 2003, 2005), density and regression estimation (Hen-
driks, 1990; Hendriks et al., 1993; Lee and Ruymgaart, 1996; Kim, 1998; Pelletier, 2005,
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2006), and goodness-of-fit tests (see Jupp (2005) for recent results and further references).
Recently, density estimation on an unknown submanifold of Rm has been considered in
Hein (2006); see also the results in Hein et al. (2007) and Giné and Koltchinskii (2006).
However, few is known about classification on a given manifold. Indeed, parametric meth-
ods are considered in El Khattabi and Streit (1996) and Hayakawa (1997) in the context
of directional statistics, i.e. on the sphere, and to the best of our knowledge, no results are
available for the nonparametric classification of observations on a general manifold. The
aim of the present paper is to generalize the Euclidean kernel rule for the classification
of observations belonging to a given compact Riemannian manifold without boundary.

Classification consists in predicting the unknown label Y ∈ {0, 1} of an observation
X ∈ X . It is also called discrimination or supervised classification, this latter terminology
being frequently used in the machine learning community, and we will simply use the
term classification for short. The observation X as well as its label Y are assumed to
be random so that the frequency of outcome of particular pairs is described by the
distribution of (X, Y ). In practice, the classification procedure is performed by a classifier
or classification rule, which in mathematical terms is defined as a function g : X → {0, 1}.
The performance of a given classifier g may be quantified by its probability of error L(g)

defined by
L(g) = P(g(X) �= Y ),

an error occurring whenever g(X) �= Y . It is well known (see e.g., Devroye et al., 1996 for
a recent exposition) that the minimum of L(g) over all possible classifiers g is achieved
by the Bayes rule given by

g�(x) =
{

0 if P(Y = 0|X = x) ≥ P(Y = 1|X = x)

1 otherwise.
(1.1)

In this sense, the Bayes rule is the optimal decision. However, it depends on the unknown
distribution of the pair (X, Y ), and for this reason, the Bayes classifier cannot be con-
structed in practice. Therefore, we shall consider an empirical classifier gn based on n
independent copies (X1, Y1), . . . , (Xn, Yn) of (X, Y ). Following Devroye et al. (1996),
the classifier gn will be called strongly consistent if its probability of error

L(gn) = P(gn(X) �= Y |(X1, Y1), . . . , (Xn, Yn))

is such that
lim

n→∞ L(gn) = L(g�) with probability one.

In the present paper, we focus on the kernel classification rule, which is derived from
kernel density estimate, pioneered in Akaike (1954), Parzen (1962) and Rosenblatt (1956).
More precisely in a Euclidean space, the kernel rule consists in labeling by 0 a point x if∑n

i=1 1{Yi=0}K((x − Xi)/hn) ≥ ∑n
i=1 1{Yi=1}K((x − Xi)/hn), and by 1 otherwise, where

the kernel K is a nonnegative function decreasing with the distance to the origin, and
where hn is a sequence of smoothing parameters. Using the kernel introduced in Pelletier
(2005, 2006), we generalize herein the kernel classification rule to the case of a closed
Riemannian manifold and we prove its strong consistency.
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The paper is organized as follows. Section 2 introduces the kernel on the manifold
defined in Pelletier (2005) as well as some notation. In Section 3, we define the kernel
classification rule and prove its strong consistency. For clarity, the proof of our main
result, which relies on several auxiliary results, is exposed in Section 4.

2 Notation and definitions
Let (M, g) be a compact Riemannian manifold without boundary of dimension d. Let us
first briefly introduce the main notions from Riemannian geometry used throughout the
paper. For materials on differential geometry, we refer to Chavel (1993) and Kobayashi
and Nomizu (1969). First of all, we shall denote by dg the Riemannian geodesic distance,
and by vg the Riemannian volume measure on M. The Riemannian metric tensor g defines
a scalar product on each tangent space TpM to M at p. Given a chart (U, ϕ) on M with
domain U and local coordinates x1, . . . , xd on ϕ(U) ⊂ Rd , the local representation of the
Riemannian metric on U is given by the d×d matrix the elements of which are defined by
gi j = g(∂i, ∂ j ), where ∂i denotes the i th coordinate vector field on U . Locally, the volume
element is expressed as

√|g(x)|, where |g(x)| denotes the determinant of the metric in local
coordinates, i.e., given an integrable function f on M whose support is included in the
domain U of the chart (U, ϕ), we have

∫
U f(p)vg(dp) = ∫

ϕ(U )
f
(
ϕ−1(x)

)√|g(x)|λ(dx),

where λ denotes the Lebesgue measure on Rd .
Given a point p ∈ M, the exponential map at p, denoted by expp and defined on

a suitable neighborhood of 0p in TpM, maps a tangent vector X p to M at p to the point of
M located at the distance ‖X p‖ on the unique geodesic starting at p with initial velocity
vector X p. When the Riemannian manifold is complete, which is the case herein, expp
is indeed defined on all of TpM. Every point p in M has a neighborhood U which is the
diffeomorphic image of a star-shaped neighborhood of 0p in TpM. So using the canonical
identification of TpM with Rd , the inverse exp−1

p of expp gives rise to local coordinates
called geodesic normal coordinates. In these local coordinates, geodesics through p are
represented as straight lines, thus expp locally rectifies geodesics. At last, at each p in M,
there exists a maximal number injg(p) > 0, called the injectivity radius at p, such that
the restriction of the exponential map at p to the ball in TpM centered at 0p and of radius
injg(p) is a diffeomorphism onto its image. The infimum over p of all the injectivity radii
at p is called the injectivity radius of M, and is denoted by injg(M).

We are now in a position to define a kernel Kh on a Riemannian manifold (M, g) with
bandwidth parameter h, as in Pelletier (2005). First of all, let K : R+ → R be a positive
and continuous map such that:

(i)
∫
Rd K(‖u‖)λ(du) = 1,

(ii) supp K = [0; 1],
where λ denotes the Lebesgue measure on Rd .

Now for p and q two points of M, let θp(q) be the volume density function on M
roughly defined by Besse (1978, p. 154):

θp : q 
→ θp(q) = µexp∗
p g

µgp

(exp−1
p (q)),
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i.e., the quotient of the canonical measure of the Riemannian metric exp∗
p g on Tp(M)

(pullback of g by the map expp) by the Lebesgue measure of the Euclidean structure gp on
Tp(M). Note that this definition makes sense for q in a neighborhood of p, yet the volume
density function may be defined globally by recursing to Jacobi fields (Willmore, 1993,
p. 219). More importantly, in terms of geodesic normal coordinates at p, θp(q) equals the
square root of the determinant of the metric g expressed in these coordinates at exp−1

p (q),
i.e., the volume element expressed in geodesic normal coordinates. Additionally, for p
and q in a normal neighborhood U of M, we have θp(q) = θq(p) (Willmore, 1993,
p. 221).

Then we define a kernel Kh(p, ·) : M → R+ on M by:

Kh(p, q) = 1

θp(q)

1

hd
K

(
dg(q, p)

h

)
, (2.1)

for all q ∈ M. In (2.1), h is the bandwidth or smoothing parameter and we assume that it
satisfies the condition

h ≤ h0 < injg(M), (2.2)

for some fixed h0, where injg(M) is the injectivity radius of M [strictly positive since M
is compact].

The kernel (2.1) has some interesting properties proved in Pelletier (2005) that we
briefly summarize below. First of all, this kernel is a probability density on M with
respect to the Riemannian volume measure. Second, if the function K is such that∫
Rd uK(‖u‖)λ(du) = 0, then the kernel is centered on p in the sense that, if a random

variable X valued in M has density Kh(p, ·) with respect to vg, then p is the intrinsic
mean of X, provided h is small enough. Additionally, when M is Rd , we have θp(q) = 1
for all p, q, and so Kh reduces to a standard isotropic kernel on Rd supported by the
closed unit Euclidean ball.

In all of the following, we shall assume that the function K is such that

inf
0≤x≤ 1

2

K(x) > 0,

which implies that the kernel Kh(p, ·) takes strictly positive values on the geodesic ball
BM(p, h

2 ) centered at p and of radius h/2. This assumption is needed in the proofs of
Lemma 4.3 and Lemma 4.5 and is related to the notion of regular kernels on Rd (see
e.g., Devroye et al., 1996, Definition 10.1). In this assumption, the scalar 1

2 is arbitrary. It
could be replaced by any real number in the open interval (0; 1), and the particular value
of 1

2 is selected for the sake of simplicity only.

3 Kernel classification rule
In this section, we define a kernel classification rule using the kernel (2.1) and establish
its consistency. To this aim, let (X1, Y1), . . . (Xn, Yn) be n independent copies of a pair of
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random variables (X, Y ) valued in M × {0; 1}. Then we define the kernel classification
rule g0

n : M → {0; 1} by:

g0
n(p) =

{
0, if

∑n
i=1 1{Yi=0}Khn (p, Xi) ≥ ∑n

i=1 1{Yi=1}Khn (p, Xi),

1, otherwise,
(3.1)

for all p ∈ M, and where Khn is a kernel on M of the form given by (2.1) with bandwidth
sequence hn .

As in the Introduction, L(g�) will denote the probability of error of the Bayes rule g�

defined by (1.1), and the classification error probability of the kernel rule will be denoted
by L

(
g0

n

)
, i.e.,

L
(
g0

n

) = P(g0
n(X) �= Y |(X1, Y1), . . . , (Xn, Yn)).

We are now in a position to state our main result.

Theorem 3.1 Suppose that hn → 0 and nhd
n → ∞. Then

lim
n→∞ L

(
g0

n

) = L(g�)

with probability one.

Theorem 3.1 states that the kernel classification rule (3.1) is strongly consistent. As
exposed in the Introduction, the application field of this type of result is vast, in particular
when the data to be classified does not have an Euclidean structure, and thus preventing the
use of standard classification method. It is the case for instance when studying automatic
labelling of shapes which, following Kendall et al. (1999), can be understood as points on
a Riemannian manifold. However, the practical implementation of the kernel rule (3.1)
requires knowledge of the geometry of the manifold. Depending on the application, if the
geometry is unknown, an extra work would be needed to derive the geometric quantities,
or a numerical approximation to them. Those aspects exceed the scope of the present
paper and are left for future research.

4 Proofs
The proof of Theorem 3.1 is given in Section 4.3 and relies on several auxiliary results.
One first Lemma on the metric entropy of the manifold is proved in Section 4.1. Auxiliary
Lemmas concerning the classification rule are demonstrated in Section 4.2.

4.1 Covering number
Let us first recall that the ρ-covering number of a subset S of a metric space is defined as
the smallest number of open balls of radius ρ whose union cover S. The logarithm of the
ρ-covering number is generally called the metric entropy of S.

To bound the covering number of the manifold M, we shall need the following Lemma,
which gives a lower bound on the volume of a geodesic ball in M, under the condition
that the radius is small enough. The condition on the radius is linked with the geometry of
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the manifold, including its curvature. The curvature of a manifold measures the extent by
which the parallel transport of a field along a small closed curve differs from the identity.
There exists several equivalent notions to describe the curvature of a manifold, and in
particular the sectional curvature which is used in the next Lemma. Given a point p ∈ M,
consider a two-dimensional submanifold Np of M consisting of geodesic arcs through p
such that their tangent vectors at p form a two-dimensional subspace of the tangent space
to M at p, i.e., a section π. Then, using on Np the Riemannian metric induced by that of
M, the sectional curvature of the section π is equal to the Gaussian curvature of Np at p.
A manifold is said of constant curvature if all its sectional curvatures are the same.

Lemma 4.1 Let (M, g) be a compact Riemannian manifold without boundary of dimen-
sion d. Let δ be the infimum of the sectional curvatures of M. Let ρ be a strictly positive
scalar such that

ρ < min

{
injg(M),

π√
δ
, 2π

}
,

where injg(M) is the injectivity radius of M, and where we have set π√
δ

= +∞ whenever

δ ≤ 0. Then, for all p ∈ M, there exists a positive constant C independent of p such that

vg
(
BM(p, ρ)

) ≥ Cρd .

Proof: By the Günther–Bishop volume comparison Theorem (Chavel, 1993, Theo. 3.7),
we have

vg
(
BM(p, ρ)

) ≥ Vδ(ρ),

where Vδ(ρ) is the volume of the ball of radius ρ in the space of constant sectional
curvature δ, i.e., the d-sphere of constant sectional curvature δ when δ > 0; Rd when
δ = 0; and the hyperbolic space of constant sectional δ when δ < 0.

Now we proceed to derive lower bounds on Vδ(ρ). To this aim, following Chavel
(1993, p. 117), the volume Vδ(ρ) may be evaluated as follows:

Vδ(ρ) = cd−1

∫ ρ

0
Sd−1
δ (t)dt,

where

Sδ(t) =

⎧⎪⎪⎨
⎪⎪⎩

1√
δ

sin(
√

δt), if δ > 0,

t, if δ = 0,
1√−δ

sinh(
√−δt), if δ < 0,

and where cd−1 is the volume of the (d − 1)-dimensional unit sphere in Rd .
First of all, observe that, in the case where δ < 0, we have Vδ(ρ) ≥ V0(ρ) since

sinh(u) ≥ u for all u ≥ 0. Second, in the case where δ > 0, we have V0(ρ) ≥ Vδ(ρ) since
1√
δ

sin(
√

δt) ≤ t for all t ≥ 0. Consequently, it suffices to bound from below Vδ(ρ) in the
case where δ > 0.
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To this aim, since ρ < π√
δ
, we have

√
δt ≤ π

2 for all t ≤ ρ
2 . So using the inequality

sin u ≥ 2
π

u for all 0 ≤ u ≤ π
2 , we obtain

Vδ(ρ) ≥ Vδ(ρ/2)

≥ cd−1

(
1√
δ

)d−1 ∫ ρ/2

0

(
2

π

√
δt

)d−1

dt,

leading to the lower bound

Vδ(ρ) ≥ cd−1

d

(
2

π

)d−1 (ρ

2

)d
, (4.1)

which holds for all δ. �

Lemma 4.2 Let (M, g) be a compact Riemannian manifold without boundary of di-
mension d. Let δ be the infimum of the sectional curvatures of M and let N (ρ) be the
ρ-covering number of M. If ρ is such that

0 < ρ < min

{
injg(M),

π√
δ
, 2π

}
,

where injg(M) is the injectivity radius of M, and where we have set π√
δ

= +∞ whenever

δ ≤ 0, then there exists a positive constant C such that

N (ρ) ≤ Cρ−d .

Proof: Consider a maximal set of points {pi; i ≥ 1} such that dg(pi, p j) > ρ for all
i �= j . Then M ⊂ ∪i≥1 BM(pi, ρ) otherwise there would exist a point p on M such that
pi , dg(p, pi) > ρ for all points pi , which is not possible by the definition of the set
{(pi); i ≥ 1}. Furthermore, since M is compact, there exists an integer N such that, after
sorting the pi’s, we have

M ⊂ ∪N
i=1 BM(pi, ρ).

But ∪N
i=1 BM(pi, ρ/2) ⊂ M, and BM(pi, ρ/2) ∩ BM(p j, ρ/2) = ∅ whenever i �= j . As

a consequence, we obtain that

N∑
i=1

vg
(
BM(pi, ρ/2)

) ≤ Volg(M),

where Volg(M) is the volume of M. But from Lemma 4.1, there exists a positive constant
C such that

vg
(
BM(pi, ρ/2)

) ≥ Cρd,

for all i = 1, . . . , N. Consequently we have

N ≤ Volg(M)

C
ρ−d ,

hence the Lemma. �



42 Loubes -- Pelletier

4.2 Auxiliary results
Consider the classification rule

gn(p) =
{

0, if
∑n

i=1 1{Yi=0}Khn (p,Xi)

nEKhn (p,X )
≥

∑n
i=1 1{Yi=1}Khn (p,Xi )

nEKhn (p,X )

1, otherwise.

Clearly, this classification rule is equivalent to g0
n defined in (3.1). Now we define the

function ηn on M by

ηn(p) =
∑n

j=1 Y j Khn (p, X j)

nEKhn (p, X)
,

and we shall denote by η(p) the conditional probability that Y is 1 given X = p, i.e.,

η(p) = P {Y = 1|X = p} = E [Y |X = p
]
.

According to Theorem 2.3 in Devroye et al. (1996, Chap. 2, p. 17), the Theorem will be
proved if we show that∫

M
|η(p) − ηn(p)|µ(dp) → 0 with probability one as n → ∞, (4.2)

where µ is the probability measure of the random variable X.

Lemma 4.3 Let Kh(p, ·) be a kernel on M of the form given by (2.1). Let X be a random
variable valued in M with probability measure µ. Then there exists a constant C > 0
depending only on K and on the geometry of M such that:

sup
q∈M

∫
M

Kh(p, q)

EKh(p, X)
µ(dp) ≤ C.

Proof: First of all, we have∫
M

Kh(p, q)

EKh(p, X)
µ(dp) =

∫
BM(q,h)

Kh(p, q)

EKh(p, X)
µ(dp).

Next, cover the geodesic ball BM(q, h) by NB geodesic balls centered at points pi of
BM(q, h) and of radius h

4 . Then we start with the following inequality:∫
M

Kh(p, q)

EKh(p, X)
µ(dp)

≤
NB∑
i=1

∫
BM(pi,h/4)

Kh(p, q)

EKh(p, X)
µ(dp)

=
NB∑
i=1

∫
BM(pi,h/4)

supp∈BM(pi,h/4) Kh(p, q)

EKh(p, X)
µ(dp). (4.3)
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Now we proceed to bound the two terms in the ratio under the integral above.
First of all, since Kh(·, q) is supported by BM(q, h), we have for all i = 1, . . . ,NB ,

and all q ∈ M:

sup
p∈BM

(
pi ,

h
4

) Kh(p, q) ≤ sup
p∈M

sup
q∈BM(p,h)

Kh(p, q)

≤
(

sup
p∈M

sup
q∈BM(p,h)

θ−1
p (q)

)
1

hd
sup

‖x‖≤h
K

(‖x‖
h

)

≤
(

sup
p∈M

sup
q∈BM(p,h0)

θ−1
p (q)

)
1

hd
sup

‖x‖≤1
K (‖x‖)

= C1
1

hd
, (4.4)

where we have set

C1 =
(

sup
p∈M

sup
q∈BM(p,h0)

θ−1
p (q)

)
sup

‖x‖≤1
K (‖x‖) ,

and where h0 is the constant defined by (2.2).

Second, for all p ∈ M, we have

EKh(p, X) =
∫

M
Kh(p, q)µ(dq)

≥
∫

BM(p,h/2)

θ−1
p (q)

1

hd
K

(
dg(q, p)

h

)
µ(dq)

≥
(

inf
p∈M

inf
q∈BM(p,h/2)

θ−1
p (q)

)
1

hd
inf

q∈BM(p,h/2)
K

(
dg(q, p)

h

)

×
∫

BM

(
p, h

2

) µ(dq)

≥
(

inf
p∈M

inf
q∈BM(p,h0)

θ−1
p (q)

)
1

hd
inf‖x‖≤1/2

K (‖x‖)
∫

BM

(
p, h

2

) µ(dq)

= C2
1

hd
µ

(
BM

(
p,

h

2

))
,

where

C2 =
(

inf
p∈M

inf
q∈BM(p,h0)

θ−1
p (q)

)
inf‖x‖≤1/2

K (‖x‖) .

Now, noting that for all p ∈ BM
(
pi,

h
4

)
we have BM

(
pi,

h
4

) ⊂ BM(p, h
2 ), we obtain

EKh(p, X) ≥ C2
1

hd
µ (BM(pi, h/4)) , (4.5)

for all p ∈ BM
(
pi,

h
4

)
.
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Reporting (4.2) and (4.5) yields∫
M

Kh(p, q)

EKh(p, X)
µ(dp) ≤

NB∑
i=1

C1

C2

∫
BM(pi ,h/4)

µ(dp)

µ (BM(pi, h/4))

= C1

C2
NB

for all q ∈ M. Now, applying Lemma 4.2 to BM(q, h), and since Volg(BM(q, h)) =
O(hd ), where the constant in O(hd ) can be made uniform in q since M is closed, we
obtain that there exists a constant C such that NB ≤ C. Hence the Lemma. �

From now on, µ will denote the probability measure of X.

Lemma 4.4 If hn → 0 then∫
M

|η(p) − Eηn(p)|µ(dp) → 0

as n → ∞.

Proof: Let ε > 0. Since M is compact, the set of continuous functions on M is dense in
L1(M, µ), and so there exists a continuous function r such that∫

M
|η(p) − r(p)|µ(dp) ≤ ε.

First of all, we have∫
M

|η(p) − Eηn(p)|µ(dp)

≤
∫

M
|η(p) − r(p)|µ(dp) +

∫
M

|r(p) − Eηn(p)|µ(dp) (4.6)

≤ ε +
∫

M
|r(p) − Eηn(p)|µ(dp).

For the second term in the right-hand side of (4.6), we may write∫
M

|r(p) − Eηn(p)|µ(dp)

=
∫

M

∣∣∣∣r(p) −
∫

M
η(q)

Khn (p, q)

EKhn (p, X)

∣∣∣∣µ(dq)

≤
∫

M

∫
M

|r(p) − η(q)| Khn (p, q)

EKhn (p, X)
µ(dp)µ(dq)

≤
∫

M

∫
M

|r(p) − r(q)| Khn (p, q)

EKhn (p, X)
µ(dp)µ(dq) (4.7)

+
∫

M

∫
M

|r(q) − η(q)| Khn (p, q)

EKhn (p, X)
µ(dp)µ(dq).
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Now we proceed to prove that the two terms in the right-hand side of (4.7) are bounded
from above by a constant multiple of ε for all n large enough.

Since the function r is continuous and since M is compact, r is uniformly continuous
so there exists ρ > 0 such that |r(q) − r(p)| < ε for all p and q in M with dg(p, q) < ρ.
Thus ∫

M

∫
M

|r(p) − r(q)| Khn (p, q)

EKhn (p, X)
µ(dp)µ(dq)

≤
∫

M

∫
BM(p,ρ)

|r(q) − r(p)| Khn (q, p)

EKhn (p, X)
µ(dq)µ(dp) (4.8)

+
∫

M

∫
Bc

M(p,ρ)

|r(q) − r(p)| Khn (q, p)

EKhn (p, X)
µ(dq)µ(dp),

where BM(p, ρ) and Bc
M(p, ρ) denotes respectively the geodesic ball in M centered at p

and of radius ρ, and its complement. But for n large enough, hn < ρ so BM(p, hn) ⊂
BM(p, ρ). Consequently, the second term in the right-hand side of (4.8) vanishes and we
obtain ∫

M

∫
M

|r(p) − r(q)| Khn (p, q)

EKhn (p, X)
µ(dp)µ(dq)

≤
∫

M

∫
BM(p,ρ)

|r(q) − r(p)| Khn (q, p)

EKhn(p, X)
µ(dq)µ(dp)

≤ ε

∫
M

∫
BM(p,ρ)

Khn (q, p)

EKhn (p, X)
µ(dq)µ(dp)

= ε

∫
M

∫
BM(p,hn)

Khn (q, p)

EKhn (p, X)
µ(dq)µ(dp)

= ε Volg(M). (4.9)

Now for the second term in the right-hand side of (4.7), we have∫
M

∫
M

|r(q) − η(q)| Khn (p, q)

EKhn (p, X)
µ(dq)µ(dp),

≤ sup
q∈M

∫
M

Khn (p, q)

EKhn (p, X)
µ(dp)

∫
M

|r(q) − η(q)|µ(dq)

≤ Cε (4.10)

for some constant C by Lemma 4.3.
Finally, reporting (4.10), (4.9), and (4.7) in (4.6) leads to the desired result. �

Lemma 4.5 There exists a positive constant C such that

E

∫
M

|ηn(p) − Eηn(p)|µ(dp) ≤ C

(
1

n
N

(
hn

4

)) 1
2

.
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Proof: We have

E {|ηn(p) − Eηn(p)|} ≤
√
E
{|ηn(p) − Eηn(p)|2}

=

⎡
⎢⎢⎣
E

{(∑n
j=1 Y j Khn (p, X j) − EYKhn (p, X)

)2
}

n2
(
EKhn (p, X)

)2

⎤
⎥⎥⎦

1/2

=
⎡
⎣E

{(
YKhn (p, X) − EYKhn (p, X)

)2
}

n
(
EKhn (p, X)

)2

⎤
⎦

1/2

≤
⎡
⎣E

{(
YKhn (p, X)

)2
}

n
(
EKhn (p, X)

)2

⎤
⎦

1/2

≤
[
EK2

hn
(p, X)

n
(
EKhn (p, X)

)2

]1/2

. (4.11)

First of all, we have

EK2
hn

(p, X) ≤ sup
q∈BM(p,hn)

Khn (p, q)EKhn(p, X)

≤ sup
‖x‖≤1

K (‖x‖)
(

sup
p∈M

sup
q∈BM(p,h0)

θ−1
p (q)

)
1

hd
n
EKhn (p, X).

Therefore

EK2
hn

(p, X)

n
(
EKhn (p, X)

)2 ≤ C1

nhd
nEKhn (p, X)

, (4.12)

where C1 = sup‖x‖≤1 K (‖x‖)
(

supp∈M supq∈BM(p,h0)
θ−1

p (q)
)

.

Now we bound EKhn (p, X) as follows:

EKhn (p, X)

≥ 1

hd
n

∫
BM

(
p,

hn
2

) 1

θp(q)
K

(
dg(q, p)

hn

)
µ(dq)

≥ 1

hd
n

(
inf
p∈M

inf
q∈BM(p,h0)

θ−1
p (q)

)
inf‖x‖≤1/2

K(‖x‖)µ
(

BM

(
p,

hn

2

))

and so

EKhn (p, X) ≥ C2
1

hd
n
µ

(
BM

(
p,

hn

2

))
, (4.13)

where C2 =
(

inf p∈M infq∈BM(p,h0) θ−1
p (q)

)
inf‖x‖≤1/2 K(‖x‖).



A kernel-based classifier on a Riemannian manifold 47

From (4.11), (4.12) and (4.13), it follows that

E {|ηn(p) − Eηn(p)|} ≤ C1

C2

1√
n

1√
µ
(

BM

(
p, hn

2

)) ,

for all p ∈ M, and so∫
M
E {|ηn(p) − Eηn(p)|}µ(dp) ≤ C1

C2

√
Volg(M)

1√
n

[∫
M

µ(dp)

µ (BM(p, hn/2))

]1/2

,

by Cauchy–Schwarz. Now, using a cover of M by N
(hn

4

)
geodesic balls BM

(
pi,

hn
4

)
centered at points pi of M and of radius hn

4 , we obtain that

∫
M

µ(dp)

µ (BM(p, hn/2))
≤
N (hn/4)∑

i=1

∫
BM(pi,hn/4)

µ(dp)

µ (BM(pi, hn/4))

= N (hn/4).

Consequently

∫
M
E {|ηn(p) − Eηn(p)|}µ(dp) ≤ C1

C2

√
Volg(M)

(
1

n
N

(
hn

4

)) 1
2

. �

4.3 Proof of Theorem 3.1
We proceed to demonstrate (4.2), i.e., that∫

M
|η(p) − ηn(p)|µ(dp) → 0 with probability one as n → ∞.

First of all, we have

E

∫
M

|η(p) − ηn(p)|µ(dp)

≤
∫

M
|η(p) − Eηn(p)|µ(dp) + E

∫
M

|ηn(p) − Eηn(p)|µ(dp)

≤
∫

M
|η(p) − Eηn(p)|µ(dp) + C1

(
1

n
N

(
hn

4

)) 1
2

for some positive constant C1 by Lemma 4.5. SinceN
(hn

4

) = O
( 1

hd
n

)
by Lemma 4.2, and

since nhd
n → ∞ by assumption, it follows that

1

n
N

(
hn

4

)
→ 0 as n → ∞.
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Next, by applying Lemma 4.4, we obtain

E

∫
M

|η(p) − ηn(p)|µ(dp) → 0 as n → ∞.

Therefore, (4.2) will be proved if we show that∫
M

|η(p) − ηn(p)|µ(dp) − E
∫

M
|η(p) − ηn(p)|µ(dp) → 0

with probability one as n → ∞. For this purpose, we shall use McDiarmid’s inequality
(McDiarmid, 1989) applied to the centered random variable∫

M
|η(p) − ηn(p)|µ(dp) − E

∫
M

|η(p) − ηn(p)|µ(dp).

First of all, keep the data fixed at (x1, y1), . . . , (xn, yn) and replace the ith pair (xi, yi) by
(x̄i, ȳi), changing the value of ηn(p) to η̄i(p). Then we have∣∣∣∣
∫

M
|ηn(p) − η(p)|dµ(p) −

∫
M

|η̄i(p) − η(p)|µ(dp)

∣∣∣∣ ≤
∫

M
|ηn(p) − η̄i(p)|µ(dp)

≤ 2

n
sup
q∈M

∫
M

Khn (p, q)

EKhn (p, X)
µ(dp)

≤ 2C1

n

using Lemma 4.3, for some positive constant C1. So, applying McDiarmid’s inequality
(McDiarmid, 1989) yields

P

{∫
M

|ηn(p) − η(p)|µ(dp) ≥ ε

}

≤ P
{∫

M
|ηn(p) − η(p)|µ(dp) − E

∫
M

|ηn(p) − η(p)|µ(dp) ≥ ε

2

}

≤ C exp
(
−ε2n

)
.

for all ε > 0. Finally, and using the Borel–Cantelli Lemma, we conclude that∫
M

|η(p) − ηn(p)|µ(dp) − E
∫

M
|η(p) − ηn(p)|µ(dp) → 0

with probability one as n → ∞, which proves (4.2), and so the Theorem. �
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