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Abstract
Given a random vector X valued in Rd with density f and an arbitrary

probability number p ∈ (0;1), we consider the estimation of the upper level
set { f ≥ t(p)} of f corresponding to probability content p, i.e., such that the
probability that X belongs to { f ≥ t(p)} is equal to p. Based on an i.i.d. ran-
dom sample X1, . . . ,Xn drawn from f , we define the plug-in level set estimate
{ f̂n ≥ t(p)

n }, where t(p)
n is a random threshold depending on the sample, and

where f̂n is a nonparametric kernel density estimate based on the same sam-
ple. We establish the exact convergence rate of the Lebesgue measure of the
symmetric difference between the estimated and actual level sets.

Index Terms — Kernel estimate; Density level sets; Nonparametric statistics.
AMS 2000 Classification — 62H30, 62H12.

1 Introduction
Let X be a Rd-valued random variable with density f . For any t ≥ 0, the t-upper-
level set L (t) of f is defined by

L (t) = { f ≥ t}= {x ∈ Rd : f (x)≥ t}. (1.1)
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Density level sets are used in a variety of scientific areas, including statistics
and machine learning, medical imaging, computer vision, or remote sensing, and
with applications to unsupervised classification/clustering, pattern recognition,
anomaly or novelty detection for instance. Motivated by these applications, the
theory behind their estimation has developed significantly in the recent years.
Excess-mass level set estimates are studied in Hartigan (1987), Muller and Saw-
itzki (1991), Nolan (1991), Polonik (1995, 1997). Other popular level set esti-
mates are the plug-in level set estimates, formed by replacing the density f with
a density estimate f̂n in (1.1). Under some assumptions, consistency and rates of
convergence (for the volume of the symmetric difference) have been established
in Baillo et al. (2000, 2001), Baillo (2003), and an exact convergence rate is ob-
tained in Cadre (2006). Recently, Mason and Polonik (2009) derive the asymptotic
normality of the volume of the symmetric difference for kernel plug-in level set
estimates; see also related works in Molchanov (1998), Cuevas et al. (2006).

So far, most theoretical works on the subject have focused on the estimation
of a density level set at a fixed threshold t in (1.1). In practice, this threshold
has to be interpreted as a resolution level of the analysis for the application under
consideration, but its meaning is more easily understood in terms of probability
content as follows: given a probability number p ∈ (0;1), define t(p) as the largest
threshold such that the probability of L (t(p)) is greater than p, i.e.,

t(p) = sup
{

t ≥ 0 : P
(
X ∈L (t)

)
≥ p
}
. (1.2)

Note that P(X ∈L (t(p))) = p whenever P( f (X) = t(p)) = 0. Hence when p is
close to one, the upper level set is close to the support of the distribution. To
the contrary, when p is small, L (t(p)) is a small domain concentrated around the
largest modes of f .

In Cadre (2006), a consistent estimate of t(p) is defined as a solution in t of the
following equation ∫

{ f̂n≥t}
f̂n(x)dx = p, (1.3)

where f̂n is a nonparametric density estimate of f based on an i.i.d random sam-
ple X1, · · · ,Xn drawn from f . From a numerical perspective, solving for t in (1.3)
at a fixed p would require multiple evaluations of integrals which would become
intractable in practice, especially in large dimensions. On the other hand, equa-
tion (1.2) hints at a definition of the threshold t(p) as a quantile of the distribu-
tion of the (real-valued) random variable f (X). Based on that, and following an
idea that goes back to Hyndman (1996), we propose in this paper to consider
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the estimate t(p)
n defined as the (1− p)-quantile of the empirical distribution of

f̂n(X1), . . . , f̂n(Xn). This estimate may be computed easily from an order statistic.
We focus on the case where f̂n is a nonparametric kernel density estimate, and we
consider the plug-in level set estimate Ln(t

(p)
n ) defined by

Ln(t
(p)
n ) = { f̂n ≥ t(p)

n }.

Our main result (Theorem 2.1) states that, under suitable conditions, Ln(t
(p)
n ) is

consistent in the sense that√
nhd

n λ
(
Ln(t

(p)
n )∆L (t(p))

)
P−→C(p)

f ,

where C(p)
f is an explicit constant depending on f and p, where A∆B denotes

the symmetric difference of two sets A and B, and where λ denotes the Lebesgue
measure on Rd . We also show that the limit constant C(p)

f may also be consistently
estimated. An analogous result is obtained in Corollary 2.1 in Cadre (2006) by
using the threshold estimate defined in (1.3), but the proofs of our consistency
results require refined arguments.

The paper is organized as follows. In section 2, we introduce the estimates of
the level set along with some notation. The main consistency result is stated in
section 3. Proofs are gathered in section 4. Finally, several auxiliary results for
the proofs are postponed in the Appendices, at the end of the paper.

2 Level set estimation

2.1 Notation and definitions
For any t ≥ 0, let L (t) =

{
f ≥ t

}
be the t-upper level set of f . Let H be the

function defined for all t ≥ 0 by

H(t) = P( f (X)≤ t).

Given a real number p in (0;1), let t(p) be the (1− p)-quantile of the law of f (X),
i.e.

t(p) = inf{t ∈ R : H(t)≥ 1− p}. (2.1)

By definition, the set L (t(p)) has µ-coverage no more than p, where µ denotes the
law of X . Consequently, whenever H is continuous at t(p), L (t(p)) has µ-coverage
equal to p, i.e., we have µ(L (t(p))) = p in this case.
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Given a density estimate f̂n based on an i.i.d. random sample X1, . . . ,Xn drawn
from f , plug-in estimates of L (t), H(t), and t(p) may be defined by replacing f
with f̂n in the definitions above. For any t ≥ 0, define the estimates Ln(t) and
Hn(t) by

Ln(t) =
{

f̂n ≥ t
}

and Hn(t) =
1
n

n

∑
i=1

1
{

f̂n(Xi)≤ t
}
,

and the estimate t(p)
n , for any p in (0;1), by

t(p)
n = inf{t ∈ R : Hn(t)≥ 1− p}. (2.2)

Combining these estimates leads to the estimate Ln(t
(p)
n ) of L (t(p)) at fixed prob-

ability level p. Note that all these plug-in estimates are based on the same and
whole sample X1, . . . ,Xn, without splitting. In comparison with the estimator of
t(p) defined as a solution of (1.3), the estimate t(p)

n is easily computed, by consid-
ering the order statistic induced by the sample f̂n(X1),. . . , f̂n(Xn).

2.2 Main result
First of all, whenever f is of class C1, let T0 be the subset of the range of f defined
by

T0 =

{
t ∈ (0;sup f ) : inf

{ f=t}
‖∇ f‖= 0

}
.

This set naturally arises when considering the distribution of f (X). Indeed, the
Implicit Function Theorem implies that T0 contains the set of points in (0;sup f )
which charges the distribution of f (X). We shall assume throughout that the den-
sity f satisfies the following conditions.

Assumption 1 [on f ]

(i) The density f is of class C2 with bounded second-order partial
derivatives, and f (x)→ 0 as ‖x‖→ ∞.

(ii) T0 has Lebesgue measure 0.

(iii) λ({ f = t}) = 0 for all t > 0.
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By Assumption 1-(i), the upper t-level set L (t) is compact for all t > 0, as well
as its boundary { f = t}. Assumption 1-(iii), which ensures the continuity of H,
roughly means that each flat part of f has a null volume ; it was first introduced
in Polonik (1995). Moreover, it is proved in Lemma A.1 that under Assumption
1-(i), we have T0 = f (X )\{0;sup f}, where X = {∇ f = 0} is the set of critical
points of f . Suppose in addition that f is of class Ck, with k ≥ d. Then, Sard’s
Theorem (see, e.g., Aubin, 2000) ensures that the Lebesgue measure of f (X ) is
0, hence implying Assumption 1-(ii).

In the sequel, f̂n is the nonparametric kernel density estimate of f with kernel
K and bandwidth sequence (hn) defined by

f̂n(x) =
1

nhd
n

n

∑
i=1

K
(

x−Xi

hn

)
. (2.3)

We shall assume that the kernel K satisfies the following assumption.

Assumption 2 [on K]
K is a density on Rd with radial symmetry:

K(x) = Φ(‖x‖) ,

where Φ : R+→ R+ is a decreasing function with compact support.

Under Assumption 2, sharp almost-sure convergence rates on f̂n− f can be estab-
lished ; see for instance Giné and Guillou (2002) and Einmahl and Mason (2005).

Denote by H the (d− 1)-dimensional Hausdorff measure (see, e.g., Evans
and Gariepy, 1992), which agrees with the ordinary (d− 1)-dimensional surface
measure on nice sets, and by ‖.‖2 the L2-norm. We are now in a position to state
our main result.

Theorem 2.1. Suppose that f satisfies Assumption 1 and that d ≥ 2. Let f̂n be
the nonparametric kernel density estimate (2.3) with kernel K satisfying Assump-
tion 2, and bandwidth sequence (hn) satisfying nhd

n
(logn)16 →∞ and nhd+4

n (logn)2→
0 as n→ ∞. Then, for almost all p ∈ (0;1), we have√

nhd
n λ
(
Ln(t

(p)
n )∆L (t(p))

)
P−→
√

2
π
‖K‖2 t(p)

∫
{ f=t(p)}

1
‖∇ f‖

dH .

Under the conditions on (hn), the convergence rate established in Theorem 2.1
is equal to 1/

√
nhd

n . Hence if (hn) is restricted to a sequence of the form n−s for
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s> 0, then the best convergence rate must be necessarily slower than O(n−2/(d+4)),
which is the same convergence rate as the one obtained in Corollary 2.1 in Cadre
(2006) when the estimate of t(p) is defined as a solution of (1.3).

Note that the deterministic limit in Theorem 2.1 depends on the unknown den-
sity f . However, one can prove that if (αn) is a sequence of positive numbers
tending to 0 and such that α2

nnhd
n/(logn)2→ ∞, then, for almost all p ∈ (0;1),

t(p)
n

αn
λ
(
Ln(t

(p)
n )\Ln(t

(p)
n +αn)

)
P−→ t(p)

∫
{ f=t(p)}

1
‖∇ f‖

dH .

The proof of the above result is similar to the one of Lemma 4.6 in Cadre (2006),
using our Proposition 3.4. Combined with Theorem 2.1, we then have, for almost
all p ∈ (0;1),

αn
√

nhd
n

t(p)
n λ

(
Ln(t

(p)
n )\Ln(t

(p)
n +αn)

)λ(Ln(t
(p)
n )∆L (t(p))

)
P−→
√

2
π
‖K‖2,

which yields a feasible way to estimate λ(Ln(t
(p)
n )∆L (t(p))).

Remark 2.2. As pointed out by a referee, by inspecting the proofs, the statement
of Theorem 2.1 remains valid for any estimate of the threshold t(p) provided that
it converges at the rate given by Proposition 3.4.

Remark 2.3. According to Proposition A.2 in Appendix A, on any interval I ⊂
(0;sup f ) with I∩T0 = /0, the random variable f (X) has a density on I, which is
given by

g(t) = t
∫
{ f=t}

1
‖∇ f‖

dH , t ∈ I.

Thus the normalized distance between Ln(t
(p)
n ) and L (t(p)) in Theorem 2.1 cor-

responds to the density g at point t(p), up to a multiplicative constant.

3 Proofs
In all the proofs, we assume that Assumption 1 on the underlying density f and
Assumption 2 on the kernel K are satisfied.
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3.1 Auxiliary results
First note that under Assumption 1, H is a bijection from (0;sup f ) to (0;1). In-
deed, Assumption 1-(iii) implies that H is a continuous function. Moreover, under
Assumption 1-(i), H is increasing: for suppose it were not, then for some t ≥ 0
and some ε> 0,

0 = H(t + ε)−H(t) =
∫
{t< f≤t+ε}

f dλ,

which is impossible, because λ({t < f < t + ε}) > 0. Then we denote by G the
inverse of H restricted to (0;sup f ).

Lemma 3.1. The function G is almost everywhere differentiable.

Proof. As stated above, H is increasing. Hence, by the Lebesgue derivation The-
orem, for almost all t, H is differentiable with derivative H ′(t) > 0. Thus, G is
almost everywhere differentiable.

The Levy metric dL between any non-decreasing bounded real-valued func-
tions ϕ1,ϕ2 on R is defined by

dL (ϕ1,ϕ2) = inf
{
θ > 0 : ∀x ∈ R,ϕ1(x− θ)− θ ≤ ϕ2(x)≤ ϕ1(x+ θ)+ θ

}
,

(see, e.g., Billingsley, 1995, 14.5). Recall that convergence in distribution is
equivalent to convergence of the underlying distribution functions for the metric
dL .

Lemma 3.2. Let x0 be a real number, and let ϕ1 be an increasing function with
a derivative at point x0. There exists C > 0 such that, for any increasing function
ϕ2 with dL (ϕ1,ϕ2)≤ 1,

|ϕ1(x0)−ϕ2(x0)| ≤CdL (ϕ1,ϕ2).

Proof. Let θ be any positive number such that, for all x ∈ R,

ϕ1(x− θ)− θ ≤ ϕ2(x)≤ ϕ1(x+ θ)+ θ. (3.1)

Since ϕ1 is differentiable at x0,

ϕ1(x0± θ) = ϕ1(x0)± θϕ′1(x0)+ θψ±(θ) (3.2)
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where each function ψ± satisfies ψ±(θ)→ 0 when θ→ 0+. Using (3.1) and (3.2),
we obtain

−θ(ϕ′1(x0)+1)+ θψ−(θ)≤ ϕ2(x0)−ϕ1(x0)≤ θ(ϕ′1(x0)+1)+ θψ+(θ).

Taking the infimum over θ satisfying (3.1) gives the announced result with any C
such that, for all δ ≤ 1,∣∣ϕ′1(x0)+1

∣∣+max
(
|ψ−(δ)|, |ψ+(δ)|

)
≤C.

Let L `(t) denote the lower t-level set of the unknown density f , i.e., L `(t) =
{x ∈ Rd : f (x)≤ t}. Moreover, we set

Vn = sup
t≥0

∣∣∣µn

(
L `(t)

)
−µ

(
L `(t)

)∣∣∣ , (3.3)

where µn =
1
n ∑

n
i=1 δXi is the empirical measure indexed by the sample, δx denoting

the Dirac measure at point x. The next lemma borrows elements from the Vapnik-
Chervonenkis theory; we refer the reader to Devroye et al. (1996) for materials on
the subject.

Lemma 3.3. There exists a constant C such that, for all η > 0, we have

P(Vn ≥ η)≤Cnexp
(
−nη2/32

)
.

Proof. Let A be the collection of lower level sets, namely

A = {L `(t), t ≥ 0}.

Observe that the Vapnik-Chervonenkis dimension (see, e.g., Devroye et al., 1996,
Definition 12.1) of A is 1: for any set with two elements {x1,x2}, where, without
loss of generality, f (x1)≤ f (x2), it is impossible to express the subset {x2} as an
intersection of {x1,x2} with an element of A . Then, by the Vapnik-Chervonenkis
inequality (see, e.g., Devroye et al., 1996, Theorem 12.5), combined with Theo-
rem 13.3 in Devroye et al. (1996), we obtain the stated result.

3.2 Asymptotics for the threshold estimate
Proposition 3.4. Under the conditions of Theorem 2.1, for almost all p ∈ (0;1),
we have √

nhd
n

logn

∣∣∣t(p)
n − t(p)

∣∣∣ P−→ 0.
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Proof. We first proceed to bound dL (H,Hn). We have Hn(t) = µn
(
L `

n (t)
)
, and

H(t) = µ
(
L `(t)

)
where L `

n (t) = {x ∈ Rd : f̂n(x) ≤ t} and L `(t) = {x ∈ Rd :
f (x)≤ t}. The triangle inequality gives

L `
(
t−‖ f̂n− f‖∞

)
⊂L `

n (t)⊂L `
(
t +‖ f̂n− f‖∞

)
,

which, applying µn, yields

µn

(
L `
(
t−‖ f̂n− f‖∞

))
≤ Hn(t)≤ µn

(
L `
(
t +‖ f̂n− f‖∞

))
.

Moreover, by definition of Vn in (3.3), we have

H(s)−Vn ≤ µn
(
L `(s)

)
≤ H(s)+Vn,

for any real number s. The two last inequalities give

H(t−‖ f̂n− f‖∞)−Vn ≤ Hn(t)≤ H(t +‖ f̂n− f‖∞)+Vn.

Using the fact that H is non-decreasing, we obtain

dL (H,Hn)≤max
(
‖ f̂n− f‖∞,Vn

)
. (3.4)

By Lemma 3.1, G is almost everywhere differentiable. Let us fix p ∈ (0;1)
such that G is differentiable at 1− p, and observe that G(1− p) = t(p). Denote by
Gn the pseudo-inverse of Hn, i.e.

Gn(s) = inf{t ≥ 0 : Hn(t)≥ s},

and remark that Gn(1− p) = t(p)
n . Moreover, we always have dL (H,Hn) ≤ 1

because 0≤H(t)≤ 1 and 0≤Hn(t)≤ 1 for all t ∈R. Hence, since dL (H,Hn) =
dL (G,Gn), we obtain from Lemma 3.2 that for some constant C,∣∣∣t(p)

n − t(p)
∣∣∣= |Gn(1− p)−G(1− p)| ≤CdL (H,Hn) .

Then, from (3.4) and Lemma 3.3, it follows that, for almost all p ∈ (0;1) and for
all η > 0, we have

P
(
|t(p)

n − t(p)| ≥ η
)
≤ P

(
‖ f̂n− f‖∞ ≥C1η

)
+C2nexp

(
−nC1η

2) , (3.5)

where C1 and C2 are positive constants.
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Under Assumption 2 on the kernel, and since f is bounded under Assump-
tion 1-(i), the conditions of Theorem 1 in Einmahl and Mason (2005) are satis-
fied, implying that νn‖ f̂n−E f̂n‖∞→ 0 almost surely as n→ ∞, where (vn) is any
sequence satisfying vn = o(

√
nhd

n/ logn). Moreover, under Assumption 1-(i), it
may be easily shown that ‖E f̂n− f‖∞ = O(h2

n). Hence it follows that for all η> 0,

lim
n→∞

P
(
vn‖ f̂n− f‖∞ ≥ η

)
= 0 (3.6)

Then, by the concentration inequality (3.5), we obtain the desired result.

3.3 Asymptotics for level sets
Lemma 3.5. For almost all p ∈ (0;1), we have

(i) (logn)λ
(
Ln(t(p))∆L (t(p))

)
P−→ 0 and

(ii) (logn)λ
(
Ln(t

(p)
n )∆L (t(p))

)
P−→ 0.

Proof. We only prove (ii). Set εn = logn/
√

nhd
n , which tends to 0 as n goes to

infinity under Assumption 2. Moreover, let N1, N2 be defined as

N c
1 =

{
p ∈ (0;1) : lim

ε→0

1
ε
λ
({

t(p)− ε≤ f ≤ t(p)+ ε
})

exists
}

;

N c
2 =

{
p ∈ (0;1) :

1
εn
|t(p)

n − t(p)| P−→ 0
}
.

Both N1 and N2 have a null Lebesgue measure: the first property is a conse-
quence of the Lebesgue derivation Theorem and the fact that H is a bijection from
(0;sup f ) onto (0;1). The second one is a direct consequence of Proposition 3.4.

Hence, one only needs to prove the lemma for all p ∈N c
1 ∩N c

2 . We now fix
p in this set, and we denote by Ωn the event

Ωn = {‖ f̂n− f‖∞ ≤ εn}∩{|t(p)
n − t(p)| ≤ εn}.

Since P(Ωn)→ 1 by (3.6), it suffices to show that the stated convergence holds on
the event Ωn. Simple calculations yield

λ
(
Ln(t

(p)
n )∆L (t(p))

)
= λ

({
f̂n ≥ t(p)

n ; f < t(p)
})

+λ
({

f̂n < t(p)
n ; f ≥ t(p)

})
.
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But, on the eventΩn, we have f̂n+εn≥ f ≥ f̂n−εn and t(p)
n −εn≤ t(p)≤ t(p)

n +εn.
Consequently, if n is large enough,

λ
(
Ln(t

(p)
n )∆L (t(p))

)
≤ λ

({
t(p)−2εn ≤ f < t(p)

})
+λ

({
t(p) ≤ f ≤ t(p)+2εn

})
= λ

({
t(p)−2εn ≤ f ≤ t(p)+2εn

})
≤Cεn,

for some constant C, because p ∈N c
1 and εn→ 0. The last inequality proves the

lemma, since under the conditions of Theorem 2.1, we have εn logn→ 0 as n goes
to infinity.

In the sequel, µ̃n denotes the smoothed empirical measure, which is the ran-
dom measure with density f̂n, defined for all Borel set A⊂ Rd by

µ̃n(A) =
∫

A
f̂ndλ.

Lemma 3.6. For almost all p ∈ (0;1),

(i)
√

nhd
n

{
µ̃n(Ln(t(p)))−µ(Ln(t(p)))

}
P−→ 0 and

(ii)
√

nhd
n

{
µ̃n(Ln(t

(p)
n ))−µ(Ln(t

(p)
n ))

}
P−→ 0.

Proof. We only prove (ii). Fix p ∈ (0;1) such that the result in Lemma 3.5 holds.
Observe that∣∣∣µ̃n(Ln(t

(p)
n ))−µ(Ln(t

(p)
n ))

∣∣∣
≤
∫
Ln(t

(p)
n )∆L (t(p))

| f̂n− f |dλ+
∣∣∣∣∫

L (t(p))
( f̂n− f )dλ

∣∣∣∣
≤ λ

(
Ln(t

(p)
n )∆L (t(p))

)
‖ f̂n− f‖∞ +

∣∣∣∣∫
L (t(p))

( f̂n− f )dλ
∣∣∣∣ . (3.7)

Recall that K is a radial function with compact support. Since nhd+4
n → 0 and

L (t(p)) is compact for all p ∈ (0;1), it is a classical exercise to prove that for all
p ∈ (0;1), √

nhd
n

∫
L (t(p))

( f̂n− f )dλ P−→ 0. (3.8)
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(see, e.g., Cadre, 2006, Lemma 4.2). Moreover, by (3.6) and Lemma 3.5,√
nhd

n λ
(
Ln(t

(p)
n )∆L (t(p))

)
‖ f̂n− f‖∞

P−→ 0. (3.9)

The inequalities (3.7), (3.8) and (3.9) prove the assertion of the lemma.

Lemma 3.7. For almost all p ∈ (0;1),√
nhd

n

{
µ
(
Ln(t

(p)
n )
)
−µ

(
L (t(p))

)}
P−→ 0.

Proof. Let εn = logn/
√

nhd
n and N be the set defined by

N c =

{
p ∈ (0;1) :

1
εn
|t(p)

n − t(p)| P−→ 0
}
.

By Proposition 3.4, N has a null Lebesgue measure. If p ∈N c, then we have
t(p)−εn≤ t(p)

n ≤ t(p)+εn on an event An such that P(An)→ 1 as n goes to infinity.
But, on An:

Ln(t(p)+ εn)⊂Ln(t
(p)
n )⊂Ln(t(p)− εn).

Consequently, one only needs to prove that for almost all p ∈N c, the two fol-
lowing results hold:√

nhd
n

{
µ
(
Ln(t(p)± εn)

)
−µ

(
L (t(p))

)}
P−→ 0. (3.10)

For the sake of simplicity, we only prove the “+” part of (3.10).

One can follow the arguments of the proofs of Propositions 3.1 and 3.2 in
Cadre (2006), to obtain that for almost all p ∈N c, there exists J = J(p) with√

nhd
n µ
(
Ln(t(p)+ εn)∩Vn

)
P−→ J and√

nhd
n µ
(
Ln(t(p)+ εn)

c∩ V̄n

)
P−→ J,

where we set

Vn =
{

t(p)− εn ≤ f < t(p)
}

and V̄n =
{

t(p) ≤ f < t(p)+3εn

}
.

Thus, for almost all p ∈N c√
nhd

n

{
µ
(
Ln(t(p)+ εn)∩Vn

)
−µ

(
Ln(t(p)+ εn)

c∩ V̄n

)}
P−→ 0. (3.11)
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Now let p ∈N c satisfying the above result, and set Ωn = {‖ f̂n− f‖∞ ≤ 2εn}. By
(3.6), P(Ωn)→ 1 hence one only needs to prove that the result holds on the event
Ωn. But, on Ωn,

µ
(
Ln(t(p)+ εn)

)
−µ

(
L (t(p))

)
= µ

({
f̂n ≥ t(p)+ εn; f < t(p)

})
−µ

({
f̂n < t(p)+ εn; f ≥ t(p)

})
= µ

(
Ln(t(p)+ εn)∩Vn

)
−µ

(
Ln(t(p)+ εn)

c∩ V̄n

)
.

Consequently, by (3.11), we have on Ωn√
nhd

n

{
µ
(
Ln(t(p)+ εn)

)
−µ

(
L (t(p))

)}
P−→ 0.

This proves the “+” part of (3.10). The “−” part is obtained with similar argu-
ments.

3.4 Proof of Theorem 2.1
Let t0 ∈ T c

0 . Since f is of class C2, there exists an open set I(t0) containing t0
such that

inf
{ f∈I(t0)}

‖∇ f‖> 0.

Thus, by Theorem 2.1 in Cadre (2006), we have, for almost all t ∈ I(t0),√
nhd

n λ(Ln(t)∆L (t)) P−→
√

2
π
‖K‖2 t

∫
{ f=t}

1
‖∇ f‖

dH .

Recalling now that the Lebesgue measure of T0 is 0, and that H is a bijection
from (0;sup f ) onto (0;1), it follows that the above result remains true for almost
all p ∈ (0;1), with t(p) instead of t. As a consequence, one only needs to prove
that for almost all p ∈ (0;1),

√
nhd

n Dn(p)→ 0 in probability, where

Dn(p) = λ
(
Ln(t

(p)
n )∆L (t(p))

)
−λ

(
Ln(t(p))∆L (t(p))

)
.

After some calculations, Dn(p) may be expressed as

Dn(p) =
∫
Rd

1{t(p)
n ≤ f̂n < t(p)}gdλ−

∫
Rd

1{t(p) ≤ f̂n < t(p)
n }gdλ,

13



where g = 1−21{ f ≥ t(p)}. For simplicity, we assume that 0 < t(p)
n ≤ t(p). Recall

that µ̃n is the random measure with density f̂n. Thus,

Dn(p)≤ λ
({

t(p)
n ≤ f̂n < t(p)

})
≤ 1

t(p)
n

µ̃n

({
t(p)
n ≤ f̂n < t(p)

})
.

The factor 1/t(p)
n in the right-hand side of the last inequality might be asymptot-

ically bounded by some constant C, using Proposition 3.4. Hence, for all n large
enough, and for almost all p ∈ (0;1),

Dn(p)≤C
∣∣∣µ̃n

(
Ln(t

(p)
n )
)
− µ̃n

(
Ln(t(p))

)∣∣∣ . (3.12)

The right-hand term in (3.12) may be bounded from above by∣∣∣µ̃n

(
Ln(t

(p)
n )
)
− µ̃n

(
Ln(t(p))

)∣∣∣ ≤ ∣∣∣µ̃n

(
Ln(t

(p)
n )
)
−µ

(
Ln(t

(p)
n )
)∣∣∣

+
∣∣∣µ(Ln(t

(p)
n )
)
−µ

(
L (t(p))

)∣∣∣
+
∣∣∣µ(L (t(p))

)
− µ̃n

(
Ln(t(p))

)∣∣∣ .
By Lemma 3.6 and Lemma 3.7, we obtain, for almost all p ∈ (0;1),√

nhd
n

{
µ̃n

(
Ln(t

(p)
n )
)
− µ̃n

(
Ln(t(p))

)}
P−→ 0,

which, according to (3.12), gives the stated result.

A Auxiliary results on f and H

In this Appendix, we only assume that Assumption 1-(i) holds. Recall that X is
the subset of Rd composed of the critical points of f , i.e.,

X = {∇ f = 0}.

The following lemma characterizes the set T0.

Lemma A.1. We have f (X )\{0;sup f}= T0.

Proof. Let x ∈X . If f (x) 6= 0 or f (x) 6= sup f , then obviously f (x) ∈ T0 and
hence, f (X )\{0;sup f} ⊂T0. Conversely, T0 ⊂ f (X ) by continuity of ∇ f and
because the set { f = t} is compact whenever t 6= 0.

14



The next proposition describes the absolutely continuous part of the random
variable f (X).

Proposition A.2. Let I be a compact interval of R?
+ such that I ∩T0 = /0. Then,

the random variable f (X) has a density g on I, which is given by

g(t) = t
∫
{ f=t}

1
‖∇ f‖

dH , t ∈ I.

Proof. Since { f ∈ I} is compact and { f ∈ I}∩{∇ f = 0}= /0, we have

inf
{ f∈I}

‖∇ f‖> 0.

Now, let J be any interval included in I. Observe that f is a locally Lipschitz
function and that 1{ f ∈ J} is integrable. According to Theorem 2, Chapter 3 in
Evans and Gariepy (1992),

P( f (X) ∈ J) =
∫
{ f∈J}

f dλ=
∫

J

(∫
{ f=s}

f
‖∇ f‖

dH

)
ds,

hence the lemma.
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