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2 Institut de Mathématiques et de Modélisation de Montpellier
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Abstract
A general function field methodology for estimating ocean color variables
from space is applied to the retrieval of spectral marine reflectance from
Global Imager (GLI) data. The top-of-atmosphere GLI reflectance vectors,
after correction for molecular effects, are considered as explanatory vari-
ables conditioned by the angular geometry. The inverse problem, there-
fore, is viewed as a collection of similar inverse problems, continuously
indexed by the angular variables. The solution is in the form of a field of
nonlinear regression models over the set of permitted values for the angu-
lar variables. The selected models, for reasons of approximation theory, are
fields of shifted ridge functions. The fields constructed on synthetic GLI
data for Case 1 waters are robust to noise, they handle well situations of
weakly and strongly absorbing aerosols, and the retrievals are accurate in
both oligotrophic and productive waters. In the presence of 1% noise, the
RMS error is 0.0006 (4.2%) at 412 nm and 0.0001 (1.5%) at 545 nm, i.e.,
well within the acceptable limits for quantitative biology applications. The
theoretical results, and the possible extensions, show the potential of the
function field methodology for operational estimation of marine reflectance
from GLI data.
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1 Introduction
Ocean color observations from space are affected by a variety of interfering pro-
cesses associated with propagation of electromagnetic radiation in the atmosphere-
surface system. In clear sky conditions, these processes are gaseous absorption,
molecular scattering, aerosol scattering and absorption, and surface reflection. In
cloudy conditions, scattering by cloud droplets makes it very difficult to sense
the surface, except when clouds are optically thin. The influence of the atmo-
sphere and surface must be removed in the satellite imagery to give access to
water-leaving radiance, or equivalently diffuse marine reflectance, the signal that
contains information about the water body. This is referred to as atmospheric
correction, even though surface effects are also removed. Gaseous absorption is
generally easy to handle since ocean color sensors observe in atmospheric win-
dows, and molecular scattering can be computed accurately. The influence of
scattering by aerosols, highly variable in space and time, and of reflection by a
wind-ruffled surface, which may exhibit whitecaps, is more difficult to correct.
In coastal regions, high spatial variability and proximity of land introduce further
difficulty. Fundamentally, accurate atmospheric correction is not easy to achieve
since the contribution of the water body may only represent a small fraction of
the measured signal, typically 10% in the blue over clear waters and a few percent
over turbid waters.

The standard approach for atmospheric correction, first suggested by Gordon [1],
consists of (1) estimating the aerosol reflectance in the red and near infrared spec-
tral region where the ocean can be considered totally absorbing (i.e., black), and
(2) extrapolating the aerosol reflectance to the shorter ocean color wavelengths.
Algorithms based on this approach have been developed successfully and em-
ployed for the operational processing of data from most satellite ocean color sen-
sors [2, 3, 4, 5, 6, 7, 8]. In the coastal zone where waters often contain inorganic
material, the assumption of null water reflectance in the red and near infrared
is not valid, and improvements to the standard algorithms have been proposed
[9, 10, 11, 12, 13]. For Global Imager (GLI) onboard the Advanced Earth Ob-
servation Satellite II (ADEOS-II), the atmospheric correction scheme includes
an iterative procedure for evaluating water reflectance in the near infrared that
accounts for chlorophyll, suspended sediment, and dissolved organic matter [8].
The scheme also detects the presence of absorbing aerosols by exploiting obser-
vations in the ultraviolet, yielding more accurate retrievals of marine reflectance
in the blue in the presence of such aerosols.
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An alternative approach to atmospheric correction is to perform a direct mapping
of the measured top-of-atmosphere (TOA) reflectance to the marine reflectance,
where the direct mapping solution to the statistical inverse problem is defined as
a regression function. In defining a suitable regression estimate, several consid-
erations have to be taken into account. First, the TOA reflectance depends on
angular variables, namely sun zenith angle, view zenith angle, and relative az-
imuth angle. The spectral components of the TOA reflectance vector are therefore
naturally correlated via geometry, possibly in a complex manner, and correlation
between explanatory variables is known to reduce the efficiency of statistical mod-
eling techniques. Second, angular variables affect essentially the atmosphere and
surface contributions to the TOA reflectance. They do not provide information on
marine reflectance, which is fairly isotropic. Yet, the angular variables need to be
accounted for in the inversion procedure since they introduce some variability in
the measured signal. This leads to the problem where vectors of TOA reflectance
are treated as explanatory variables conditioned by the less informative angular
variables, and where the inverse problem is viewed as a collection of similar in-
verse problems, continuously indexed by the angular variables. The proposed
solution consists in attaching an inverse model to each value of the angular vari-
ables, with the attachment varying smoothly with the angular variables. Such a
solution is mathematically formalized as a function field over the set of permitted
values for the angular variables.

The function field methodology for inverting satellite data influenced by condi-
tioning variables was introduced generally by Pelletier and Frouin [14], then de-
veloped for the remote sensing of chlorophyll concentration [15]. It was recently
extended to the retrieval of diffuse marine reflectance [16]. Shifted ridge func-
tions were selected in the modeling because of their good approximation proper-
ties [17]. The statistical models were evaluated on synthetic data and tested on
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) imagery, taking into account
noise in the data. Theoretical performance was adequate in terms of accuracy, ro-
bustness, and generalization capabilities, suggesting that the methodology might
provide more accurate retrievals of marine reflectance than standard algorithms
in the presence of absorbing aerosols and in productive waters. The satellite esti-
mates obtained with the ridge function fields were also more realistic than those
using standard atmospheric correction. The studies further showed that large lev-
els of noise, due to uncertainties in radiation transfer modeling and radiometry,
could be managed if the noise distribution were known or estimated.
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In the following, the potential of the function field methodology for atmospheric
correction of GLI ocean-color imagery is evaluated. The objective is to demon-
strate that accurate mapping can be obtained between GLI spectral observations
and spectral marine reflectance for a realistic model of Case 1 waters. The pro-
cedure to retrieve marine reflectance by use of ridge function fields is described.
Performance is quantified using synthetic data, and errors are analyzed as a func-
tion of angular geometry, geophysical conditions, and noise distribution. Prac-
tical ways of estimating the noise distribution are suggested. Extension of the
methodology to optically complex (Case 2) waters is discussed, as well as other
applications.

2 Inversion by Use of Ridge Function Fields
Given a prior distribution on the input parameters to a radiative transfer model
and a noise distribution, the solution to the statistical inverse problem considered
in [14, 15, 16] is defined as the regression function of the marine reflectance to
the TOA reflectance and angular variables. Formally, let X and Y be the (spec-
tral) vectors of TOA reflectance and marine reflectance, taking values in Rd and
Rd′ , respectively. Let T be the vector of cosines of the angular variables valued
in some compact subset T ⊂ R3. Then the regression function m of Y on X
and T is given by m(x, t) = EX=x,T=t[Y|X,T] and performs a direct mapping
to the vector of marine reflectance values. Owing to the complexity of radiative
transfer models, though, m may not be expressed analytically. Therefore m must
be approximated numerically. To this aim, the approach developed in [14, 15, 16]
consists in i) sampling the forward operator (i.e., the radiative transfer model) ac-
cording to the prior distribution, ii) defining a reasonable noise distribution, and
iii) estimating m from the simulated data (Xi,Ti,Yi), i = 1, . . . , n. Function
fields over T are introduced as models for m which reflect the different roles
played by the TOA reflectance and the angular variables.

The function fields considered for the estimation of the diffuse marine reflectance
are fields of shifted ridge functions, called ridge function fields in short. A ridge
function on Rd is a function of the form h(a.x), where h is some map on R and
a.x is the standard inner product of a and x on Rd. Approximation by ridge
function refers to approximation by linear combinations of some number K of
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ridge functions, or their shifted versions, written as follows:

f(x) =
K∑
i=1

cih(ai.x + bi). (2.1)

Ridge function fields over T are constructed by replacing the parameters ai, bi,
and ci in (2.1) with functions of t, lying in some finite-dimensional subspace of
functions. Ridge function fields are known to span a dense set when the number of
parameters tend to infinity [17], and it may be shown that, under mild conditions,
ridge function fields adjusted by least-squares are strongly universally consistent
nonparametric regression estimates. Thus the procedure is convergent as for esti-
mating m.

More specifically, let x ∈ Rd and y ∈ Rd′ be the values taken by the (spectral)
vectors of the TOA reflectance and marine reflectance, respectively. Let t =
(cos θs, cos θv, cos ∆ϕ)t be the value taken by the vector of cosines of the angular
variables, taking values in the set T = [1

2
; 1]× [1

2
; 1]× [−1; 1]. Let

E(a1, ..., an, b1, ..., bn) = span {h(a1.x + b1), ..., h(an.x + bn)}, (2.2)

where h : R → R, i.e., E(a1, ..., an, b1, ..., bn) is the vector space spanned by the
linear combinations of the h(ai.x+ bi). For the retrieval of y from x, we consider
function fields ζ : T → Ed′

(a1, ..., an, b1, ..., bn) such that

ζ(t)j(x) =
n∑
i=1

cji (t)h(ai.x + bi), (2.3)

for j = 1, ..., d′, and the statistical model relative to the j th component of y is
written as

yj = ζ(t)j(x) + εj. (2.4)

where εj represents the residual of the modeling. The functions cji are defined
by multi-linear interpolation on a 2 × 2 × 3 regular grid covering T , i.e., they
are piecewise-differentiable functions, each of whose depends on 12 scalars, but
smoother models mau easily be implemented. These scalars, together with the ai’s
and the bi’s constitute the free parameters of the model. The model is adjusted by
minimizing the sum of the squared errors E on the data defined by

E =
1

n

n∑
i=1

‖ζ(ti)(xi)− yi‖2, (2.5)
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where ‖.‖ is the usual Euclidean norm on Rd′ . In practice, the components of y
are normalized linearly between −1 and 1, and the minimization of E is carried
out using a stochastic gradient descent procedure (see Pelletier and Frouin [15]
for details).

3 Model Construction and Performance
To determine the inverse (regression) model parameters, we generated a statisti-
cally significant data set of about 62,000 joint samples of TOA and marine re-
flectance using a coupled ocean-surface-atmosphere radiative transfer code [18].
This code takes into account the essential physics of the problem, i.e., gaseous
absorption, scattering by molecules and aerosols, absorption by aerosols, Fresnel
reflection at the interface, and backscattering by the water body. The TOA re-
flectance was simulated in the GLI spectral bands centered at 380, 412, 443, 460,
520, 545, 666, 749, and 865 nm and was corrected for molecular effects. The
marine reflectance was simulated according to Morel and Maritorena [19], valid
for Case 1 waters. The data set encompassed the major sources of variability (ge-
ometric, geophysical) and included three aerosols models (marine, continental,
and urban) in varied mixtures. It was randomly split into two subsets D0

e and D0
v ,

used respectively for adjusting and validating the statistical inverse models. For
robustness assessments, we also generated noisy versions of the previous subsets,
hereafter denoted byDνe andDνv , ofD0

e andD0
v , by adding some amount of noise to

the TOA reflectance. The selected noise is the sum of correlated and uncorrelated
components, and is defined by:

x̃ = x + νcx +
(
νuc1 x

1, ..., νuc8 x
8
)t
, (3.1)

where x̃ is a noisy version of TOA reflectance vector x, and νc, νnc1 , ..., ν
nc
8 are

random variables uniformly distributed on the interval [− ν
200

; ν
200

], with the total
amount of noise ν in percent.

For the models we selected empirically (i.e., via simulations) the sufficient num-
ber of K = 15 basis functions, and constructed two fields ζ0 and ζ1 with K = 15.
The first one, ζ0, was adjusted on D0. In the case of ζ1, we added a noise amount
of 1% to the TOA reflectance during the execution of the minimization procedure,
where the added noise satisfies (3.1). Note that this is not equivalent to adjusting
the fields on D1

e . As indicated in the previous section, the parameter maps were
defined by multilinear interpolation on a 2 × 2 × 3 regular grid covering T , and
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the fields were optimized via a dedicated stochastic gradient descent algorithm.

The theoretical performance of the models is summarized in Table 1, which gives,
on a component-per-component basis, the Root Mean Squared error (RMS) and
the Relative Root Mean Squared error (RMSR) of ζν evaluated on Dν′

e , for all
combinations of ν, ν ′ = 0, 1. Biases are not indicated in the table, since the es-
timation is practically unbiased for all fields. These statistical measures show
that the fields present good validation properties, even in the presence of noise.
As expected, for a noise level of ν% on the TOA reflectance, the best retrievals
are achieved by ζν . At 380 nm, for example, the relative error is doubled from
2.8 to 5.6% when ζ0 is applied to the noisy data, but is reduced to 4.2% when
using ζ1. This illustrates the importance of the noise distribution, defined prior
to the construction of the models. The marine reflectance estimations are accu-
rate over the whole range of values, as depicted by Figs. 1 and 2, which display
plots of estimated versus expected reflectance. The distribution of the residuals
(i.e., estimation errors) depends on the aerosol optical thickness (τa). The condi-
tional quantiles of orders 5, 25, 75, and 95% spread with increasing τa (Fig. 3).
However, the errors are weakly dependent on the aerosol type and no trends are re-
vealed (not shown here). Absorbing aerosols, in particular, are handled adequately
by the function field methodology, which, unlike standard algorithms, processes
information in spectral bands sensitive to aerosol absorption (i.e., in the ultraviolet
and blue). The scattering angle also influences the results, evidenced by a slight
error increase at low and high scattering angles (Fig. 4). This is expected since
the aerosol phase function (i.e., the atmospheric interference) generally exhibits
smaller values at intermediate backscattering angles (120-140 degrees). The rela-
tion between reflectance ratio (443 and 545 nm) and chlorophyll-a concentration
obtained using estimated reflectance is slightly degraded; see Fig. 5 for reflectance
estimated by ζ0 from 1% noisy data. In this case, the reflectance ratio is estimated
with a RMS accuracy of about 0.3 (Fig. 6), which translates into a relative RMS
error of about 10% on the chlorophyll-a concentration.

4 Conclusion
The statistical methodology presented above allows one to estimate directly spec-
tral marine reflectance from space in the context of regression analysis, by con-
sidering the TOA measurements as explanatory variables conditioned by the ge-
ometry of the observation process. This leads to a framework where the solution
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is expressed as a function field. The inversion scheme is robust, with good gener-
alization capability, and computationally efficient.

The results obtained with GLI synthetic data over Case 1 waters suggest that the
methodology has the potential for improving the accuracy of the inversion com-
pared with the current GLI atmospheric correction algorithm, as it can handle
noise and different types of aerosols, including absorbing ones, and provide a
uniform error over the entire range of marine reflectance values. In the pres-
ence of 1% noise, marine reflectance at 380, 412, 443, 460, 520, and 545 nm
is retrieved with a RMS error of 0.0006 (4.2%), 0.0006 (3.7%), 0.0004 (3.1%),
0.00031 (2.7%), 0.0001 (1.1%), and 0.0001 (1.5%), respectively. This error meets
the requirements of 0.001-0.002 in the blue for quantitative biology applications,
and it allows discrimination of at least 30 classes of chlorophyll-a concentration
in the range 0.03-30 mg m−3. Let us emphasize, however, that the results are
theoretical. To conclude about practical suitability, the methodology needs to be
tested on actual GLI data, acquired in varied oceanic and atmospheric regimes.

The noise structure, or more precisely the noise distribution, is an essential fac-
tor for the robustness of an inversion algorithm, and its influence is well revealed
through the simulations. Further investigations are required to get a precise idea of
the statistical properties of the total discrepancies between radiative transfer sim-
ulations and GLI measurements, including instrument noise, calibration errors,
and model uncertainties. As pointed out by Frouin and Pelletier [16], using con-
comitant satellite observations and in-situ measurements to investigate the noise
statistical properties might not be feasible because of the lack or insufficient num-
ber of in-situ measurements, and a reasonable alternative would be to compare
satellite measurements with elements of the range of the forward model.

The methodology is general, therefore it can be extended to other sets of mod-
els. In particular, one may attempt to extend the retrievals of marine reflectance
to optically complex Case 2 waters, and to estimate directly, by designing spe-
cific fields of vector-valued maps, the variables affecting the marine reflectance,
i.e., chlorophyll-a concentration, yellow substance absorption, and sediment con-
centration. Since these variables, which characterize water composition, are the
variables of interest in bio-geochemistry applications, the direct approach would
be more efficient that a two-step estimation via the marine reflectance. But in
this case performance will be affected by the complexity of the relation between
marine reflectance and water composition variables. These extensions of the func-
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tion field methodology, as well as the application to actual GLI data and evaluation
against in-situ measurements, give a perspective for future work.
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Table 1: Root Mean Squared error (RMS) and Root Mean Squared Relative error
(RMSR) for the models ζ0 and ζ1, evaluated on the non-noisy construction and
validation sets (D0

e and D0
v), and on a 1%-noisy version of them (D1

e and D1
v).

FIELD ζ0

λ (nm) 380 412 443 460 520 545
D0
e RMS 0.000357 0.000362 0.000221 0.000165 5.33e− 05 6.64e− 05

RMSR 0.027290 0.025008 0.019108 0.016000 6.19e− 03 7.69e− 03
D0
v RMS 0.000357 0.000363 0.000221 0.000165 5.36e− 05 6.63e− 05

RMSR 0.028168 0.025763 0.019607 0.016372 6.23e− 03 7.65e− 03

D1
e RMS 0.000901 0.000846 0.00055 0.000422 0.000150 0.000187

RMSR 0.055998 0.049971 0.04171 0.036165 0.016896 0.021906
D1
v RMS 0.000888 0.000833 0.000543 0.000417 0.000152 0.000186

RMSR 0.056408 0.049936 0.041885 0.036508 0.017140 0.021722

FIELD ζ1

D0
e RMS 0.000434 0.000431 0.000267 0.000202 6.96e− 05 8.48e− 05

RMSR 0.028771 0.025905 0.021234 0.018443 8.02e− 03 9.91e− 03
D0
v RMS 0.000433 0.000433 0.000267 0.000202 7.18e− 05 8.56e− 05

RMSR 0.029120 0.026096 0.021457 0.018729 8.30e− 03 9.95e− 03

D1
e RMS 0.000654 0.000631 0.000402 0.000309 9.76e− 05 0.000132

RMSR 0.041901 0.037426 0.031563 0.027655 1.12e− 02 0.015271
D1
v RMS 0.000646 0.000624 0.000397 0.000305 0.000100 0.000131

RMSR 0.041971 0.037267 0.031546 0.027777 0.011457 0.015066
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Figure 1: Estimated versus expected above-surface marine reflectance for model
ζ0 on non-noisy GLI data.

13



Figure 2: Estimated versus expected above-surface marine reflectance for model
ζ1 on 1%-noisy GLI data.
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Figure 3: Conditional quantiles of order 5%, 25%, 50%, 75%, and 95% of the
residual distributions as a function of aerosol optical thickness at 550 nm.
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Figure 4: Conditional quantiles of order 5%, 25%, 50%, 75%, and 95% of the
residual distributions as a function of scattering angle.
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Figure 5: Ratio of marine reflectance at 443 and 545 nm as a function of
chlorophyll-a concentration for theoretical reflectance (top) and for reflectance
estimated by ζ1 from 1%-noisy GLI data (bottom).
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Figure 6: Estimated versus expected ratio of marine reflectance at 443 and 545
nm for model ζ1 on 1%-noisy GLI data.
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