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IRMAR – UMR CNRS 6625
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Abstract

We consider the problem of estimating the gradient lines of a density, which can be used
to cluster points sampled from that density, for example via the mean-shift algorithm
of Fukunaga and Hostetler (1975). We prove general convergence bounds that we then
specialize to kernel density estimation.
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1. Introduction

Fukunaga and Hostetler (1975) propose clustering points in space according to the gradient
ascent flows of the underlying density. Let f be a differentiable density on Rd. Assuming
for now that f is known, consider the following scheme. Fix a > 0 and, starting at x0 ∈ Rd,
iteratively define

x` = x`−1 + a
∇f(x`−1)

f(x`−1)
, for ` ≥ 1. (1)

When it exists, define x∞ = lim`→∞ x`. The rationale behind the iterative gradient ascent
scheme (1) is to have the sequence (x` : t ≥ 0) converge to a local mode of f — representing
a cluster center, close in the spirit to Hartigan (1975) — without going through a valley.
See Figure 1 and Figure 2 for simple illustrations involving the mixture of two Gaussians
in dimensions d = 1 and d = 2. Now, a sample from f , say X1, . . . , Xn, can be clustered by
applying the iteration (1) to each Xi’s, obtaining a sequence (Xi,` : ` ≥ 0), and grouping
according to the limit Xi,∞, meaning that Xi and Xj are grouped together if Xi,∞ = Xj,∞.

In the same spirit, Cheng et al. (2004) propose to use the gradient ascent lines of f ,
which form gradient trees, to perform a kind of hierarchical clustering of points on the plane.
Clustering points according to the local maxima of the underlying density is also advocated
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Figure 1: A mixture of two Gaussians in dimension d = 1: f(x) = qg0,1(x) + (1− q)gµ,σ(x)

where gµ,σ(x) := e−(x−µ)2/2σ2
/
√

2πσ, and q = 0.7, µ = 3 and σ = 0.3. The starting point is
at x = 1.8, and the 50 successive points in the iteration (1) are also plotted. Although the
starting point is closer to the peak at x = 3, the sequence converges to the peak at x = 0.
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Figure 2: A mixture of two Gaussians in dimension d = 2: f(x, y) = qg0,1(x)g0,1(y) +
(1 − q)gµ1,σ1(x)g0,σ2(y) with q = 0.7, µ1 = 3, σ1 = 1.5 and σ2 = 0.5. The starting point
is at (x, y) = (1.8,−1), and the 50 successive points in the iteration (1) are also plotted.
Although the starting point is closer to the peak at (x, y) = (3, 0), the sequence converges
to the peak at (x, y) = (0, 0).

by Comaniciu and Meer (2002), while an EM-type algorithm for finding the local maxima
of the density f is suggested in Carreira-Perpinan and Williams (2003); Carreira-Perpinan
(2007); Li et al. (2007).

In practice, the underlying density f is rarely known and has to be estimated. A
kernel estimate is used in Fukunaga and Hostetler (1975); Cheng et al. (2004); Li et al.
(2007); Comaniciu and Meer (2002). Let Φ : Rd → R be a kernel function — an integrable
function with

∫
Rd Φ(x)dx = 1 — and for a bandwidth h > 0, let Φh(u) = h−dΦ(u/h). The
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corresponding kernel estimate for f based on a sample X1, . . . , Xn is

fφn,h(x) :=
1

n

n∑
i=1

Φh(x−Xi), (2)

and if Φ is differentiable, then we may estimate the gradient of f by

∇fφn,h(x) :=
1

nh

n∑
i=1

∇Φh(x−Xi).

Fukunaga and Hostetler (1975) introduce the term ‘mean-shift’ when describing the
resulting estimate based on the Epanechnikov kernel Φ(u) ∝ (1 − ‖u‖2)+, where t+ =
max(t, 0) is the positive part of t ∈ R. Indeed, they show that, in that case,

∇fφn,h(x)

fφn,h(x)
∝ 1

|Ix,h|
∑
i∈Ix,h

Xi − x, Ix,h := {i : ‖Xi − x‖ ≤ h}.

Cheng (1995) further argues that the gradient ascent algorithm in (1) can be interpreted
as a mean-shift when using a spherically symmetric kernel. Indeed, let Φ be a spherically
symmetric kernel on Rd, by which we mean a function Φ : Rd → R of the form1 Φ(u) =
φ(‖u‖), where φ : R+ → R+ is a non-negative function, called the profile function in Cheng
(1995), that satisfies the following unit integral condition∫

Rd
Φ(u)du = ωd

∫ ∞
0

φ(r)rd−1dr = 1, (3)

where ωd is the surface area of the unit sphere of Rd, and∫
Rd
uiujΦ(u)du =

{
1 if i = j;

0 otherwise.
(4)

The local average at x is

Mn,h(x) =

∑n
i=1XiΦh(x−Xi)∑n
i=1 Φh(x−Xi)

=
1

nfφn,h(x)

n∑
i=1

XiΦh(x−Xi).

The mean shift at x is defined by

Tn,h(x) = Mn,h(x)− x.

This is intimately related to the gradient of another kernel estimate of f . To see this,
following Cheng (1995), we consider a shadow kernel Ψ of Φ, with profile function ψ defined
by

Ψ(u) = ψ(‖u‖), ψ(r) =

∫ ∞
r

sφ(s)ds. (5)

1. Note that Cheng (1995) uses a kernel of the form φ(‖u‖2), so the presentation here is little different.
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By construction and (3)-(4), Ψ integrates to 1, and is therefore a kernel function; it is also
continuously differentiable. Let

fψn,h(x) =
1

n

n∑
i=1

Ψh(x−Xi),

which is the kernel estimate of f with kernel Ψ and bandwidth h.

Lemma 1 (Cheng, 1995) At any point x of Rd, we have

Tn,h(x) = h2
∇fψn,h(x)

fφn,h(x)
.

Assume that ∇Ψ is bounded in Rd. Then by the Law of Large Numbers, for each fixed
x ∈ Rd, fφn,h(x)→ fφh (x) and ∇fψn,h(x)→ ∇fψh (x), almost surely as n→∞, where

fφh (x) =

∫
f(y)Φh(x− y)dy,

and fψh is defined similarly. Furthermore, if f is bounded and continuously differentiable

on Rd with bounded gradient, then fφh (x)→ f(x) and ∇fψh (x)→ ∇f(x) as h→ 0. Hence,
for any x fixed such that f(x) > 0,

Tn,h(x)→ Th(x) ∼ h2∇ log f(x),

as n→∞ first, followed by h→ 0. Following this line of thought, the mean-shift algorithm
appears to approximate the gradient ascent scheme (1), with a = h2. The convergence
results in Cheng (1995) and Comaniciu and Meer (2002) provide only a very partial math-
ematical backing to this intuition.

Our contribution is a mathematical proof of consistency for the estimation of gradient
ascent lines by the original mean-shift algorithm of Fukunaga and Hostetler (1975). We
note that the same approach also applies to the more general mean-shift algorithm of Cheng
(1995), and applies directly to the algorithm suggested by Cheng et al. (2004). In detail,
let f : Rd → R be differentiable. Starting at x0 ∈ Rd, we study the convergence as a → 0
of the sequence

x` = x`−1 + a∇f(x`−1), for ` ≥ 1, (6)

towards the gradient ascent line of f starting at x0. In particular, we characterize the limit
x∞, providing a consistency result for the clustering algorithm based on the local maxima
of f . Note that (6) includes (1) by replacing f with log f . We note that such convergence
results are available in the rich literature on dynamic systems — see, e.g., Stetter (1973, Sec
3.5), Beyn (1987) and Merlet and Pierre (2010, Sec 2) — and in the literature on convex
optimization (where f is convex) — see, e.g., Boyd and Vandenberghe (2004, Sec. 9.3)
and Bolte et al. (2010). However, for the general case, we could not find a specific rate
of convergence as the one we obtain in (14). Although higher-order discretization schemes
can be designed (Stetter, 1973), we focus entirely on the first-order scheme (6). We further
elaborate on the literature after stating our main results in Section 2.
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Then, given another differentiable function f̂ , meant to approximate f , we compare the
sequence (x̂`) to (x`), where

x̂` = x̂`−1 + a∇f̂(x̂`−1), for ` ≥ 1, (7)

starting at the same point x̂0 = x0. In particular, when estimating the gradient ascent lines
of a density f based on a sample X1, . . . , Xn, f̂ can be taken to be some estimate of f , and
the gradient ascent sequence defined by f̂ = log f̂ (starting at some x0) is compared to that
of f = log f . Such approximation results are often called perturbation or stability results
in the literature on dynamical systems. See, for example, Hirsch and Smale (1974, Chap
6) or Teschl (2012, Sec 2.5). Most of these results are qualitative (e.g., pertaining to the
topology of the gradient flow lines), while the bound we obtain in (15) is quantitative.

Finally, we provide an explicit convergence rate for the case where the density is es-
timated by kernel convolution. This seems to be new in the literature on the mean-shift
algorithm and, more generally, on the estimation of the gradient lines of a density.

The rest of the paper is organized as follows. In Section 2, we establish our main results,
one on the convergence of the gradient ascent scheme (6), and another on the stability of
smooth flows, relating the gradient flows of f and f̂ when these functions are close as C2

functions. In Section 3, we deduce convergence rates for the algorithm of Fukunaga and
Hostetler (1975) defined in (1). The technical arguments are given in Section 4.

2. Main results

Before stating our main results, we introduce some notations. For a function f : Rd → R,
we let f (`)(x) denote the differential form of f of order ` at a point x ∈ Rd, and let Hf (x)
denote the Hessian matrix of f , when they exist. The differential form f (`)(x) of f at x is
the multilinear map from Rd × · · · × Rd (` times) to R defined by

f (`)(x)[u1, . . . , u`] =
d∑

i1,...,i`=1

∂`f(x)

∂xi1 . . . ∂xi`
u1,i1 . . . u`,i` ,

where, for each 1 ≤ i ≤ `, ui has components ui = (ui,1, . . . , ui,d). Given a multilinear map
L of order ` from Rd × · · · × Rd to R, we denote by ‖L‖ its operator norm defined by

‖L‖ = sup {|L[u1, . . . , u`]| : ‖u1‖ = · · · = ‖u`‖ = 1} , (8)

and writing L as

L[u1, . . . , u`] =

d∑
i1,...,i`

Li1,...,i`u1,i1 . . . u`,i` ,

we denote by ‖L‖max the norm defined by

‖L‖max = max{|Li1...i` | : 1 ≤ i1, . . . , i` ≤ d}. (9)

We note for future reference that

‖L‖max ≤ ‖L‖ ≤ d
`
2 ‖L‖max. (10)
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For a set S ⊂ Rd, we also define

κ`(f, S) = sup
x∈S
‖f (`)(x)‖. (11)

Note that κ`(f, S) is well-defined and is finite when f is of class C` and S is compact. The
upper level set of a function f : Rd → R at b ∈ R is defined as

Lf (b) = {x ∈ Rd : f(x) ≥ b}. (12)

We suppress the dependence on f whenever no confusion is possible.
Recall that a critical point of f is a point x at which the gradient of f vanishes, that

is, such that ∇f(x) = 0. A flow line or integral curve of the positive gradient flow of f is a
curve x such that x′(t) = ∇f(x(t)). Note that, along any flow line, the value of f increases,
that is, the function t 7→ f(x(t)) is increasing with t. By the theory of ordinary differential
equation, through any point x0 ∈ Rd passes a unique flow line x(t) defined for t ∈ [0, t0),
where t0 > 0, such that x(0) = x0 (Hirsch et al., 2004, Section 7.2); we say that x(t) is the
flow line starting at x0. Let x? be a critical point of f . We say that x0 is in the attraction
basin of x? if the flow line x(t) starting at x0 is defined for all t ≥ 0 and limt→∞ x(t) = x?.
An accumulation point of a sequence of points through an integral curve x, i.e., a sequence
of the form {x(tn) : t1 < t2 < . . . }, is called a limit point of x. Any limit point of a
gradient flow line of f is necessarily a critical point of f ; see Hirsch et al. (2004, Section
9.3, Proposition, p. 206) and Hirsch et al. (2004, Section 9.3, Theorem, p. 205).

We start by establishing the convergence of the gradient ascent scheme (6) towards the
flow lines of the underlying function f . Starting from a point x0 in the attraction basin
of the location of a stable local maximum x?, under some conditions stated below, the
iteration (6) converges to x?. In fact, the polygonal line defined by the sequence (x`) is
uniformly close to the flow line starting at x0 and ending at x?. For the definition of a
stable equilibrium of a dynamical system, we refer to Hirsch et al. (2004, Section 8.4).

Theorem 1 (Convergence of gradient ascent) Let f be a function of class C3. Let
(x(t) : t ≥ 0) denote the flow line of f starting at x0 and ending at a local maxima x? of f .
Let (x`) be the sequence defined in (6) starting at x0. Then there exists A = A(x0, f) > 0
such that, whenever 0 < a < A,

lim
`→+∞

x` = x?. (13)

Denote by xa(t) the following polygonal line

xa(t) = x`−1 + (t/a− `+ 1)(x` − x`−1), ∀t ∈ [(`− 1)a, `a).

Assume Hf (x?) has all eigenvalues in (−ν,−ν) for some 0 < ν < ν. Then, there exists a
C = C(x0, f, ν, ν) > 0 such that, for any 0 < a < A,

sup
t≥0
‖xa(t)− x(t)‖ ≤ Caδ, δ :=

ν

ν + ν
. (14)

We mention the convergence result (Comaniciu and Meer, 2002, Th 1), which essentially
says that, when f is a kernel density estimator with bandwidth h as in (2), the sequence (x`)
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in (6) with choice a = h2 converges and (f(x`)) is monotone nondecreasing. In the literature
on dynamical systems, the convergence result (13) is proved in (Merlet and Pierre, 2010, Sec
2), together with convergence rates, but under slightly different conditions; in particular,
f is assumed to have compact upper level sets. Beyn (1987) compares the discrete and
continuous trajectories under milder conditions, but only at a discrete grid of time points,
and does so assuming that the starting point x0 is sufficiently close to the corresponding
stationary point x?. Moreover, the starting point of the discrete and continuous trajectories
in Beyn (1987) are potentially different. In fact, Beyn (1987) refers the reader to (Stetter,
1973) — which we mentioned earlier — for the case where the starting points may be taken
to be the same.

Next, we establish a stability result for flows of smooth functions. In words, under some
conditions made precise below, when f and f̂ are close as C2 functions, then their flow lines
are also close. Denote by B(x, r) the open ball of radius r centered at x and by B̄(x, r) its
closure.

Theorem 2 (Stability of smooth flows) Suppose f and f̂ are of class C3. Let (x(t) :
t ≥ 0) be a flow line of f starting at x0 and ending at x? where Hf (x?) has all eigenvalues

in (−ν,−ν) for some 0 < ν < ν. Let x̂(t) be the flow line of f̂ starting at x0. Let
S = L(f(x0)/2) ∩ B̄(x0, 3r0) where r0 = maxt ‖x(t)− x0‖, and define

ηm = sup
x∈S
‖f (m)(x)− f̂ (m)(x)‖.

Then there is a constant C = C(f, x0, ν, ν) ≥ 1 such that, when max(η0, η1, η2) ≤ 1/C and
η3 ≤ C, x̂(t) is defined for all t ≥ 0 and

sup
t≥0
‖x(t)− x̂(t)‖ ≤ C max

{√
η0, η

δ
1

}
, (15)

where δ is defined in (14).

Stability results tend to be qualitative in the literature on dynamical systems. However,
to establish the bound above, we do use a well-known quantitative result. See Lemma 7,
which we took from Hirsch et al. (2004, Sec 17.5).

Combining Theorems 1 and 2, we arrive at the following bound for approximating the
flow lines of a function f by the polygonal line obtained from the gradient ascent algorithm
(7) based on an approximation f̂ to f .

Corollary 1 In the context of Theorem 2, for a > 0, define

x̂a(t) = x̂`−1 + (t/a− `+ 1)(x̂` − x̂`−1), ∀t ∈ [(`− 1)a, `a), (16)

where (x̂`) is defined in (7). Then there is a constant C = C(f, x0, ν, ν) ≥ 1 such that,
when max(η0, η1, η2) ≤ 1/C and η3 ≤ C,

sup
t≥0
‖x̂a(t)− x(t)‖ ≤ C

[
aδ + max

{√
η0, η

δ
1

}]
, (17)

where δ is defined in (14).
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Note that the exponent δ which appears in these results only depends on the ratio ν/ν
which is a lower bound on the condition number of Hf (x?). But the constants in Theorems 1
and 2 depend on ν and ν not only through their ratio.

We note that Beyn (1987) establishes a result similar to Corollary 1 under milder as-
sumptions. Indeed, just as we do here, he studies how the discrete system (7) approximates
the continuous system

x′(t) = ∇f(x(t)),

when the functions f̂ and f may differ. He bounds the difference between the discrete
and continuous trajectories, with possibly different starting points, over a discrete grid of
time points, assuming the starting point x0 is close enough to x?. He also assumes that
∇f̂(x?) = 0, which simplifies the analysis a fair amount. With these working assumptions,
his bound is in κ2a + η1 — see Equation (3.5) there. His method of proof is based on
the theory of stable (solution) manifolds (Irwin, 1980, Chap 4). Our approach is more
elementary and we do not know whether this more sophisticated approach has the potential
to improve on ours.

We emphasize that Theorems 1 and 2, and their combined fruit in Corollary 1, are
designed to establish our result on the uniform consistency of gradient line estimators based
on kernel density estimators as stated in Theorem 3 in the next section.

3. The estimation of gradient lines of a density

Let f̂n,h be the kernel density estimate of f in (2) with kernel Φ and bandwidth h. Sharp
almost-sure convergence rates in the uniform norm of kernel density estimates have been
obtained by several authors, for example Einmahl and Mason (2000); Giné and Guillou
(2002); Einmahl and Mason (2005). Using the recent results of Mason and Swanepoel
(2011) and Mason (2012), we derive strong uniform norm convergence rates for f̂n,k and its
derivatives.

We first control the bias component.

Lemma 2 Assume Φ is nonnegative, C3 on Rd with all partial derivatives up to order 3
vanishing at infinity, and satisfies∫

Rd
Φ(x)dx = 1,

∫
Rd
xΦ(x)dx = 0 and

∫
Rd
‖x‖2Φ(x)dx <∞. (18)

Then for any C3 density f on Rd with bounded derivatives up to order 3, there is a constant
C > 0 such that

sup
x∈Rd

∥∥∥E[f̂ (`)
n,h(x)

]
− f (`)(x)

∥∥∥ ≤ Ch(3−`)∧2, ∀0 ≤ ` ≤ 3. (19)

Next, we control the variance component. For this, we apply the main result of Mason
and Swanepoel (2011). See also Theorem 4.1 with Remark 4.2 in Mason (2012).

Lemma 3 Suppose that Φ is of the form Φ : (x1, . . . , xd) 7→
∏d
k=1 φk(xk), and that each

φk is nonnegative, integrates to 1, and is C3 on R with derivatives up to order 3 being of

8
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bounded variation and in L1(Rd). Then, for any bounded density f on Rd, there exists a
0 < b0 < 1 such that

lim sup
n→∞

sup
logn
n
≤hd≤b0

sup
x∈Rd

√
nhd+2`

log n

∥∥∥f̂ (`)
n,h(x)− E

[
f̂

(`)
n,h(x)

]∥∥∥ <∞, ∀0 ≤ ` ≤ 3, a.s. (20)

It is straightforward to design a kernel that satisfies the conditions of Lemmas 2 and 3.
In fact, the Gaussian kernel Φ(x) = (2π)−d/2 exp(−‖x‖2/2) is such a kernel.

Assuming that (20) holds and applying Corollary 1, we deduce a convergence result for
the mean-shift algorithm of Fukunaga and Hostetler (1975). We note that a similar result
holds for the simpler gradient ascent method of Cheng et al. (2004).

Theorem 3 Consider a density f satisfying the conditions of Lemma 2. Suppose f̂n,h is a
kernel estimator of f of the form (2), where Φ satisfies the conditions of Lemmas 2 and 3.
Let (x(t) : t ≥ 0) be the flow line of f starting at a point x0 with f(x0) > 0, ending at a
point x? where Hf (x?) has all eigenvalues in (−ν,−ν) for some 0 < ν < ν. For a > 0,
define (x̂a(t) : t ≥ 0) by

x̂a(t) = x̂`−1 + (t/a− `+ 1)(x̂` − x̂`−1), ∀t ∈ [(`− 1)a, `a),

where

x̂` = x̂`−1 + a
∇f̂n,h(x̂`−1)

f̂n,h(x̂`−1)
, for ` ≥ 1.

Suppose that h → 0 and nhd+6

logn → ∞. Then there exists a constant C > 0 such that, with
probability one, for all n large enough,

sup
t≥0
‖x̂a(t)− x(t)‖ ≤ C

[
a+ h2

]δ
, δ :=

ν

ν + ν
. (21)

The approximation error decreases as the discretization step a gets smaller, simply because
it controls the precision of the (discrete) gradient ascent scheme (7). We made this precise in
Theorem 1. However, as a gets smaller, the computational burden of running this gradient
ascent scheme to its limit becomes heavier. So there is a compromise between (statistical
and numerical) estimation and computational complexity. That said, choosing a smaller
(in order of magnitude) than h2 does not improve our bound (21). When a is that small,
the main source of error comes from estimating the density, rather than the accuracy of the
gradient ascent scheme, and the resulting rate is

sup
t≥0
‖x̂a(t)− x(t)‖ ≤ Cγn

(
log n

n

)2δ/(d+6)

,

for any choice of sequence (γn) with γn → ∞. We note that faster rates are possible for
densities that are Ck for k > 3, since they can be estimated more accurately by a higher
order kernel (Devroye and Gyorfi, 1985). We also mention that the curse of dimensionality
is at play here since we are estimating a nonparametric density.
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4. Proofs

We start in Section 4.1 with some auxiliary results that will be used in the proofs of our
main results. Theorem 1 and Theorem 2 are proved in Sections 4.2 and 4.3 respectively. We
prove Lemma 2 and Lemma 3 in Sections 4.4 and 4.5, and then Theorem 3 in Section 4.6.

4.1 Preliminary results

The following is a discrete version of Gronwall’s lemma. The proof is straightforward and
left to the reader.

Lemma 4 Let (y` : ` ≥ 0) be a sequence of non-negative real numbers such that

y`+1 ≤ Q1 + (1 +Q2)y`.

Then

y` ≤ y0e
Q2` +

eQ2` − 1

Q2
Q1.

The result below is on the behavior of the upper level set near a stable local maximum.

Lemma 5 Suppose that f is of class C3. Let x? be the location of a stable local maxima
of f where Hf (x?) has all eigenvalues in (−ν,−ν) with ν > ν > 0. For ε > 0, let C(ε)
be the connected component of Lf (f(x?) − ε) that contains x?. Then there is a constant
C5 = C5(f, x?) such that

B̄(x?,
√

2ε/ν) ⊂ C(ε) ⊂ B̄(x?,
√

2ε/ν), for all ε ≤ C5, (22)

and

f(x?)− f(x) ≤ ν

2
‖x− x?‖2, for all x such that ‖x− x?‖ ≤

√
2C5/ν. (23)

Proof Fix r > 0. Let H and κ3 be short for Hf (x?) and κ3(f, B̄(x?, r)), respectively. Let
ν < ν ′ < ν ′ < ν be such that Hf (x?) has all eigenvalues in [−ν ′,−ν ′]. First, we prove (22).
A Taylor development of f at x ∈ B̄(x?, r) gives

f(x) = f(x?) +
1

2
H[x− x?, x− x?] +R(x, x?), with |R(x, x?)| ≤ κ3

6
‖x− x?‖3. (24)

When x ∈ B̄ (x?, r), using the Taylor expansion (24), we get that

f(x) ≤ f(x?)− ν ′

2
‖x? − x‖2 +

κ3

6
‖x? − x‖3

≤ f(x?)− ν

2
‖x? − x‖2

when ‖x? − x‖ ≤ ξ1 := 3(ν′−ν)
κ3

∧ r. Fix 0 < ε <
νξ21
2 so that

√(2ε
ν

)
< ξ1. We then have

f(x) < f(x?)− ε when
√(2ε

ν

)
< ‖x? − x‖ ≤ ξ1. This implies that

Lf (f(x?)− ε) ⊂ B̄
(
x?,
√(2ε

ν

))
∪ B̄

(
x?, ξ1

)c
,

10
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and since the two sets on the right-hand side are disconnected, while C(ε) is connected and
contains x?, necessarily, C(ε) ⊂ B

(
x?,
√(2ε

ν

))
.

We also get using (24) that

f(x) ≥ f(x?)− ν ′

2
‖x? − x‖2 − κ3

6
‖x? − x‖3

≥ f(x?)− ν

2
‖x? − x‖2

when ‖x? − x‖ ≤ ξ2 := 3(ν−ν′)
κ3

∧ r. Fix 0 < ε <
νξ22
2 so that

√(2ε
ν

)
< ξ2. Then whenever

‖x? − x‖ ≤
√(2ε

ν

)
, we have f(x) ≥ f(x?)−ε. Reasoning as above, we obtain B

(
x?,
√(2ε

ν

))
⊂

C (ε).

Therefore, by choosing C5 < ξ1∧ ξ2, we see that (22) holds. Note that ξ1 and ξ2 depend
on r. Since we do not need an explicit value for the constant C5, we leave r > 0 arbitrarily
fixed.

The bound (23) is a direct consequence of (22).

Next is a result establishing exponential convergence rates for the gradient flow of a
smooth function ending at a stable local maximum.

Lemma 6 Suppose that f is of class C3. Let {γ(t) : t ≥ 0} be the flow line of f starting at
x0 and ending at x? where Hf (x?) has all its eigenvalues in (−∞,−ν), with ν > 0. Then,
there is C6 = C6(f, x0) such that, for all t ≥ 0,

‖γ(t)− x?‖ ≤ C6e
−νt, (25)

and

f(x?)− f(γ(t)) ≤ C6e
−2νt. (26)

Proof Note that since γ has beginning and ending points, {γ(t) : t ≥ 0} is bounded. Let
r0 > 0 be such that {γ(t) : t ≥ 0} is contained in the ball B̄(x?, r0). Let H and κ3 be short
for Hf (x?) and κ3(f, B̄(x?, r0)), respectively. A Taylor development of ∇f at x ∈ B̄(x?, r0)
gives

∇f(x) = H(x− x?) +R(x, x?),

with

‖R(x, x?)‖ ≤ κ3

√
d

2 ‖x− x
?‖2.

Therefore, we have,

d

dt
(γ(t)− x?)−H (γ(t)− x?) = R (γ(t), x?) ,

and so, since γ(0) = x0, γ satisfies the relation

γ(t)− x? = etH(x0 − x?) +

∫ t

0
e(t−s)HR (γ(s), x?) ds.

11
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Since all the eigenvalues of H are in (−∞,−ν), there is ν > ν such that we have∥∥eαH∥∥ ≤ e−να, for all α > 0.

Then,

‖γ(t)− x?‖ ≤ e−νt‖x0 − x?‖+ κ3

√
d

2

∫ t

0
e−ν(t−s)‖γ(s)− x?‖2ds.

Set u(t) = eνt‖γ(t)−x?‖ and U(t) = ‖x0−x?‖+κ3

√
d

2

∫ t
0 e

νs‖γ(s)−x?‖2ds. Then u(t) ≤ U(t)

and U ′(t) = κ3

√
d

2 e
−νtu2(t), so

U ′(t)

U(t)
= κ3

√
d

2 e
−νtu(t)

u(t)

U(t)
≤ κ3

√
d

2 e
−νtu(t) = κ3

√
d

2 ‖γ(t)− x?‖.

But since γ(t) → x? as t → ∞, there exists t0 > 0 such that ‖γ(t) − x?‖ ≤ 2(ν−ν)

κ3
√
d

for all

t ≥ t0. By integrating between t0 and t, we deduce that

logU(t) ≤ logU(t0) + (ν − ν)(t− t0),

and so
‖γ(t)− x?‖ = e−νtu(t) ≤ e−νtU(t) ≤ Q0e

−νt, for all t ≥ t0,
with Q0 := U(t0)e−(ν−ν)t0 . For t < t0, we simply have ‖γ(t) − x?‖ ≤ Q1e

−νt, where
Q1 = max0≤t≤t0 ‖γ(t)−x?‖eνt. Therefore (25) holds with the constant Q2 = max{Q0, Q1}.

We now turn to proving (26). For any x in B̄(x?, r0), we have

f(x) = f(x?) +
1

2
H[x− x?, x− x?] +R(x, x?),

for all x in B̄(x?, r0), where R is a different function (now real valued) satisfying

|R(x, x?)| ≤ κ3
6 ‖x− x

?‖3.

Then

f(x?)− f(γ(t)) ≤ 1
2‖H‖ ‖γ(t)− x?‖2 + κ3

6 ‖γ(t)− x?‖3

≤ (1
2‖H‖+Q3)Q2

2e
−2νt,

where Q3 = κ3
6 maxt≥0 ‖γ(t) − x?‖ and we applied (25) in the second line with Q2 defined

above. Therefore, (26) holds with the constant Q4 := (‖H‖/2 +Q3)Q2
2.

We then take C6 = max(Q2, Q4).

The following, adapted from Hirsch et al. (2004, Sec 17.5), is a stability result for
autonomous gradient flows.

Lemma 7 Suppose f and g are of class C3. Let x0 ∈ Rd, and suppose that

‖∇f(x)−∇g(x)‖ < η, ∀x ∈ S := Lf (f(x0)) ∪ Lg(g(x0)).

Let κ be a Lipschitz constant for ∇f on S. Let (x(t) : t ≥ 0) and (y(t) : t ≥ 0) be the flow
lines of f and g starting at x0, supposed to be defined on [0,∞). Then,

‖x(t)− y(t)‖ ≤ η

κ

[
eκt − 1

]
, ∀t ≥ 0.

12
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Next is a result on the stability of local maxima.

Lemma 8 Suppose f and g are of class C3, and have local maxima at x and y, respectively,
with Hf (x) having all eigenvalues in (−∞,−ν] for some ν > 0. Then for any C8 ≥
max

{
1, 2√

ν
, 4κ

3ν

}
, where κ = max

(
κ3(f, B̄(x, 1)), κ3(g, B̄(y, 1))

)
,

‖x− y‖ ≤ 1/C8 ⇒ ‖x− y‖ ≤ C8

(
‖f(x)− g(x)‖+ ‖f(y)− g(y)‖

)1/2
. (27)

Proof Let Hf and Hg be short for Hf (x) and Hg(y), respectively. We develop f and g
around x and y, respectively. Assuming ‖x− y‖ ≤ 1, we have

f(y) = f(x) + 1
2Hf [x− y, x− y] +Rf (x, y), with |Rf (x, y)| ≤ κ

6‖x− y‖
3;

g(x) = g(y) + 1
2Hg[x− y, x− y] +Rg(x, y), with |Rg(x, y)| ≤ κ

6‖x− y‖
3.

Summing these two equalities, we obtain

1

2
(Hf + Hg)[x− y, x− y] = f(y)− g(y) + g(x)− f(x)−Rf (x, y)−Rg(x, y).

By the triangle inequality and the fact that Hg is negative semidefinite,

ν‖x− y‖2 ≤ ‖(Hf + Hg)[x− y, x− y]‖ ≤ 2‖f(x)− g(x)‖+ 2‖f(y)− g(y)‖+ 2κ
3 ‖x− y‖

3.

When ‖x− y‖ ≤ min
(

3ν
4κ , 1

)
, we have ν‖x− y‖2 − 2κ

3 ‖x− y‖
3 ≥ ν

2‖x− y‖
2, and therefore

‖x− y‖2 ≤ 4
ν (‖f(x)− g(x)‖+ ‖f(y)− g(y)‖) ,

and from this we conclude that (27) holds with C8 = max(
√

( 4
ν ), 4κ

3ν , 1).

4.2 Proof of Theorem 1

Below, Cm refers to the constant defined in Lemma m.

We assume that x0 is not a critical point of f , for otherwise x0 = x? and there is
nothing to prove. Let t` = a`, which is the time at which the polygonal line xa(t) passes
through x`. Let L0 be short for Lf (f(x0)). Note that (x(t) : t ≥ 0) is bounded since x
is a continuous flow line with a beginning and ending points. Let r0 be large enough that
(x(t) : t ≥ 0) ⊂ B̄(x0, r0).

Claim. Without loss of generality, we may assume that L0 is bounded. To see this,
suppose the result is true when L0 ⊂ B̄(x0, 3r0). We shall prove that it remains true when
L0 * B̄(x0, 3r0). Given such a situation, build another function f̃ in such a way that f̃ is
C3 on Rd with f̃(x) = f(x) for all x ∈ B̄(x0, 2r0) and f̃(x) < f(x0) for x /∈ B̄(x0, 3r0), so
that Lf̃ (f̃(x0)) ⊂ B̄(x0, 3r0). To verify that such a function exists, consider the smoothing

function s : Rd → R defined by

s(x) =
1∫

B̄(0,1) e
−1/(1−‖x‖2)dx

e−1/(1−‖x‖2)1B(0,1)(x), x ∈ Rd,

13
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and its dilated versions sa defined by sa(x) = a−ds(x/a) for a > 0, where 1B̄(0,1)(x) = 1 if

x ∈ B̄(0, 1) and 0 otherwise. Define the function g by g(x) = 1B̄(0,5r0/2)?sr0/2(x−x0). Then

g is of class C∞, g(x) = 1 for x ∈ B̄(x0, 2r0), g(x) = 0 if x /∈ B̄(x0, 3r0), and 0 < g(x) < 1
when 2r0 < ‖x− x0‖ < 3r0. Then we may take f̃ = fg.

Therefore, (13) and (14) hold for f̃ , for constants Ã and C̃, with the same exponent δ
as given in (14). Denote by x̃ and x̃a the flow line and polygonal curve constructed from
f̃ in the same way x and xa are from f . Then, assuming C̃aδ ≤ r0, we see by the triangle
inequality that x̃(t) and x̃a(t) are determined by f̃ restricted to B̄(x0, 2r0), and since f̃
coincides with f there, x(t) = x̃(t) and xa(t) = x̃a(t), so that (13) and (14) are valid for f
if a ≤ min

{
Ã, (r0/C̃)1/δ

}
.

From now on, we assume that L0 is bounded. Note that L0 is also closed since f is
continuous, so in fact L0 is compact. Let

S = L0 ⊕ B̄(0, κ1(f,L0)) =: {x ∈ Rd : dist(x,L0) ≤ κ1(f,L0)}, (28)

where dist(x,L0) = inf{‖x− y‖ : y ∈ L0}. For any 0 ≤ ` ≤ 3, let κ` = κ`(f, S), where S is
defined in (28). For any x ∈ Rd, let

κ2(x) = κ2(f, B̄(x, ‖∇f(x)‖)) = sup{‖f (2)(y)‖ : y ∈ B̄(x, ‖∇f(x)‖)}. (29)

Notice that L0 ⊂ S and that, by construction, B̄(x, ‖∇f(x)‖) ⊂ S for any x ∈ L0. Hence,
κ2(x) ≤ κ2 for all x in L0.

Claim. For any x ∈ Rd with ∇f(x) 6= 0 and any 0 ≤ b ≤ 1 ∧ (2
√
dκ2(x))−1, we have

f(x+ b∇f(x)) > f(x) and f is increasing along the line segment [x, x+ b∇f(x)]. Using a
Taylor expansion of f at x, we have

f(x+ b∇f(x)) = f(x) + b‖∇f(x)‖2 +R(x, b),

where |R(x, b)| ≤ 1
2b

2κ2(x)‖∇f(x)‖2 ≤ b
2‖∇f(x)‖2, since b ≤ (2

√
dκ2(x))−1 ≤ κ−1

2 (x).
Then

ζ(b) := f(x+ b∇f(x)) ≥ f(x) +
b

2
‖∇f(x)‖2 > f(x). (30)

Now for any 0 < β < b,
ζ ′(β) = ∇f (x+ β∇f(x)) · ∇f(x),

and by a Taylor expansion of the components of ∇f

∇f (x+ β∇f(x)) = ∇f(x) +R2(x, β),

where ‖R2(x, β)‖ ≤ β
√
dκ2(x)‖∇f(x)‖. Hence, for any 0 < β < b

ζ ′(β) = ‖∇f(x)‖2 +R(x, β) · ∇f(x) ≥ 1

2
‖∇f(x)‖ > 0

since β < b ≤ (2
√
dκ2(x))−1 and so f is increasing along the line segment [x, x+ b∇f(x)].

Claim. For a sufficiently small, xa(t) ∈ L0 for all t ≥ 0. Indeed, since κ2(x) ≤ κ2 for
all x in L0, we have 1∧ (2

√
dκ2(x))−1 ≥ 1∧ (2

√
dκ2)−1 for all x in L0. Consequently, by the

previous claim, for any x in L0 and a ≤ 1∧ (2
√
dκ2)−1, we have f(x+ a∇f(x)) > f(x) and

14
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the values of f are increasing along the line segment [x, x + a∇f(x)]. In particular, since
xa starts at x0 ∈ L0, we have f(x1) = f(x0 + ∇f(x0)) > f(x0), and the segment [x0, x1]
belongs to L0. By recursion, we deduce that xa(t) belongs to L0 for all t ≥ 0.

From now on, we assume that

a ≤ A1 := 1 ∧ (2
√
dκ2)−1. (31)

Claim. f is increasing along the polygonal curve xa. By the previous arguments, the
values of f are increasing along the line segment [x`, x`+1], for all ` ≥ 0.

Claim. (x`) converges to a critical point of f . We just showed that the sequence
(f(x`) : ` ≥ 0) is increasing, and since it is bounded by κ0, it converges. By the first
inequality in (30) and the fact that ‖x`+1 − x`‖ = a‖∇f(x`)‖ by construction, we have

f(x`+1)− f(x`) ≥
1

2
a‖∇f(x`)‖2 =

1

2a
‖x`+1 − x`‖2, (32)

for all ` ≥ 1. Hence, for all ` ≥ 1, and all k ≥ 1, we have

f(x`+k)− f(x`) ≥
1

2a

k∑
i=1

‖x`+i − x`‖2 ≥
1

2a
‖x`+k − x`‖2,

by the triangle inequality. Since (f(x`)) is convergent, it is a Cauchy sequence, and conse-
quently, so is (x`), so that x̃ := lim`→∞ x` exists. And by (32) and the fact that f is C1,
we have

∇f(x̃) = lim
`→∞

∇f(x`) = 0,

so that x̃ is a critical point of f .

Claim. We have

‖x(t`)− x`‖ ≤
[
e`aκ2

√
d − 1

]
κ1a, ∀` ≥ 0. (33)

Indeed, let e` = x(t`)− x`. Using (6), we have

e`+1 = x(t`+1)− x`+1

= e` + [x(t`+1)− x(t`)− a∇f(x(t`))] + a [∇f(x(t`))−∇f(x`)] . (34)

By the definition of κ2, and a Taylor expansion,

‖∇f(x(t`))−∇f(x`)‖ ≤
√
dκ2‖x(t`)− x`‖ =

√
dκ2‖e`‖. (35)

We also have

x(t`+1)− x(t`)− a∇f(x(t`)) =

∫ t`+1

t`

x′(s)ds− a

t`+1 − t`

∫ t`+1

t`

x′(t`)ds

=

∫ t`+1

t`

(x′(s)− x′(t`))ds,

15
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by the definitions of x(t) and t`. Consequently,

‖x(t`+1)− x(t`)− a∇f(x(t`))‖ ≤
∫ t`+1

t`

‖x′(s)− x′(t`)‖ds.

For s ∈ [t`, t`+1], we have

‖x′(s)− x′(t`)‖ = ‖∇f(x(s))−∇f(x(t`))‖ ≤ κ2

√
d‖x(s)− x(t`)‖,

and

‖x(s)− x(t`)‖ =

∥∥∥∥∫ s

t`

x′(t)dt

∥∥∥∥ ≤ ∫ s

t`

‖x′(t)‖dt =

∫ s

t`

‖∇f(x(t))‖dt ≤ κ1(s− t`).

Hence
‖x′(s)− x′(t`)‖ ≤

√
dκ2κ1(s− t`),

and, recalling that t` = a`,

‖x(t`+1)− x(t`)− a∇f(x(t`))‖ ≤
√
dκ2κ1(t`+1 − t`)2 =

√
dκ2κ1a

2. (36)

Plugging (36) and (35) into (34), we deduce that

‖e`+1‖ ≤
√
dκ2κ1a

2 + (1 +
√
dκ2a)‖e`‖.

The inequality (33) is now a direct consequence of Lemma 4. (Recall that x(t0) = x0.)
Claim. (x`) converges to x?. By this we mean that x̃ coincides with x?. Indeed, for

any η > 0, denote by C(η) the connected component of Lf (f(x?)− η) that contains x?. Let
H be a shorthand for Hf (x?). Suppose all the eigenvalues of H are in (−ν,−ν) for some
ν > ν > 0. Because H is negative definite, when ε > 0 is small enough B̄(x?, ε) contains
no critical point of f other than x?. Let `ε be such that ‖x` − x̃‖ ≤ ε/3 when ` ≥ `ε, which
is well-defined since (x`) converges to x̃. Using the triangle inequality, and then Lemma 6
and (33), for ` = `ε,a := max

{
`ε,
⌈

1
aν log(3/(C6ε))

⌉}
, we have

‖x? − x̃‖ ≤ ‖x? − x(t`)‖+ ‖x(t`)− x`‖+ ‖x` − x̃‖

≤ ε/3 +
[
e
√
dκ2a`ε,a − 1

]
κ1a+ ε/3

≤ ε,

when a ≤ A2 for some A2 > 0 (depending on ε > 0) sufficiently small. Hence, x̃ ∈ B̄(x?, ε).
Since x̃ is a critical point, and the only critical point in B̄(x?, ε) is x?, necessarily x̃ = x?.
This proves (13) for a ≤ A := min(1, A1, A2), where A1 is defined in (31).

Henceforth, we assume that a ≤ A, so that x` → x? as `→∞, and focus on proving (14).
Bound for large t. A Taylor expansion gives

∇f(x) = H(x− x?) +R(x, x?), where ‖R(x, x?)‖ ≤
√
d

2 κ3‖x− x?‖2.

We then have

x`+1 − x? = x` − x? + a∇f(x`)

= (I + aH) (x` − x?) + aR(x`, x
?),

16
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so that
‖x`+1 − x?‖ ≤ (1− aν)‖x` − x?‖+ a

√
d

2 κ3‖x` − x?‖2,

for some ν > ν. As x` → x?, there is `0 such that, for ` ≥ `0, ν −
√
d

2 κ3‖x` − x?‖ > ν,
implying

‖x`+1 − x?‖ ≤ (1− aν)‖x` − x?‖, ∀` ≥ `0.

By recursion, we deduce that there is a constant Q1 > 0 such that

‖x` − x?‖ ≤ Q1(1− aν)` ≤ Q1e
−ν`a, ∀` ≥ 0. (37)

Fix t ∈ [t`, t`+1]. Starting with the triangle inequality, we have

‖x(t)− xa(t)‖ ≤ ‖x(t)− x?‖+ ‖x? − x`‖+ ‖x` − xa(t)‖
≤ C6e

−νt +Q1e
−ν`a + (t− t`)‖∇f(x`)‖

≤ Q2e
−νt + κ1a. (38)

In the first line, we applied (25), (37), and used the definition of xa. In the second line, we
let Q2 = C6 +Q1e

νA and used the definition of κ1 in (11).
Bound for small t. On the other hand, we also have

‖x(t)− xa(t)‖ ≤ ‖x(t)− x(t`)‖+ ‖x(t`)− x`‖+ ‖x` − xa(t)‖
≤ κ1(t`+1 − t`) + ‖x(t`)− x`‖+ ‖x` − x`+1‖
= κ1a+ ‖x(t`)− x`‖+ a‖∇f(x`)‖
≤ 2κ1a+ ‖x(t`)− x`‖.

Because f is C3, there is ε > 0 such that all the eigenvalues of Hf (x) exceed −ν when
x ∈ B̄(x?, ε). Let `ε be such that x(t), x` ∈ B̄(x?, ε) for all t ≥ a`ε and ` ≥ `ε, which implies

‖∇f(x(t))−∇f(x`)‖ ≤ ν‖x(t)− x`‖.

Using this inequality instead of (35), we can refine (33) into

‖x(t`)− x`‖ ≤
[
e`aν − 1

]
κ1a, ∀` ≥ `ε,

and since ε is fixed, we can combine this with (33) to get

‖x(t`)− x`‖ ≤
[
e`aν − 1

]
κ1a+Q3a, ∀` ≥ 0, (39)

for some constant Q3. We thus have

‖x(t)− xa(t)‖ ≤
[
2κ1 + (eνt − 1)κ1 +Q3

]
a, (40)

using the fact that t ≥ t` = a`.
Combining (38) and (40), we have

‖x(t)− xa(t)‖ ≤ (κ1 +Q3)a+ min
{
κ1ae

νt, Q2e
−νt}.

From this, we deduce (14) from elementary calculations.
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4.3 Proof of Theorem 2

Below, Cm refers to the constant defined in Lemma m.
Arguing as in the proof of Theorem 1, we may assume, without any loss of generality,

that Lf (f(x0)/2) ⊂ B̄(x0, 3r0). So from now on, we assume that Lf (f(x0)/2) is compact
and we set S = Lf (f(x0)/2). For any 0 ≤ ` ≤ 3, we also let κ` be short for κ`(f, S).

Claim. For η0 sufficiently small, x̂(t) ∈ S. Indeed, suppose there is t ≥ 0 such
that x̂(t) /∈ S. Fix ε = f(x0)/2. Then, by continuity, there is 0 ≤ t′ < t such that
f(x̂(t′)) = f(x0)− ε. Since x̂(t′), x0 ∈ S, we have

f̂(x̂(t′)) = f̂(x̂(t′))− f(x̂(t′)) + f(x̂(t′))

≤ η0 + f(x0)− ε
= η0 + f̂(x0) + f(x0)− f̂(x0)− ε
≤ f̂(x0) + 2η0 − ε,

by the triangle inequality, applied twice. Since f̂(x̂(t′)) ≥ f̂(x0), we see that this situation
does not arise when η0 < ε/2.

Claim. x̂? = limt→∞ x̂(t) is well defined and is close to x?. Since f̂ is of class C3

by assumption, the map x 7→ ∇f̂(x) is C1, and since x̂(t) stays in S and S is compact,
x̂(t) is defined for all t ≥ 0 by the first corollary to the first theorem in (Hirsch et al.,
2004, Sec. 17.4). For any ε ∈ (0, C5), with ε < f(x?) − f(x0)/2, let tε be such that
x(t) ∈ B̄(x?,

√
(2ε/ν)) for all t ≥ tε, which is well-defined since x(t) → x? as t → ∞. By

Lemma 7, we have

‖x̂(t)− x(t)‖ ≤ η1√
dκ2

e
√
dκ2t, ∀t ≥ 0. (41)

Hence

‖x̂(tε)− x?‖ ≤ ‖x̂(tε)− x(tε)‖+ ‖x(tε)− x?‖ ≤
η1√
dκ2

e
√
dκ2tε +

√
2ε

ν
=: δ1. (42)

Assume that η1 and ε are small enough that δ1 <
√

(2C5/ν). Letting C(ε) be as in Lemma 5,
by (22) we have

B̄(x?, δ1) ⊂ C(ε1),

with ε1 := ν
2δ

2
1 . Thus x̂(tε) belongs to C(ε1) and in particular f(x̂(tε)) ≥ f(x?)− ε1. Using

this last inequality, we deduce by the triangle inequality and the fact that t 7→ f̂(x̂(t)) is
increasing that for all t ≥ tε,

f(x̂(t)) ≥ f̂(x̂(t))− η0 ≥ f̂(x̂(tε))− η0 ≥ f(x̂(tε))− 2η0 ≥ f(x?)− ε2,

where ε2 := ε1 + 2η0. Since x̂(tε) ∈ C(ε1) ⊂ C(ε2) and {x̂(t) : t ≥ tε} is connected and
in Lf (f(x?) − ε2), we necessarily have {x̂(t) : t ≥ tε} ⊂ C(ε2). Assume ε, η0, η1 are small
enough that ε2 ≤ C5. Then, by Lemma 5, C(ε2) ⊂ B̄(x?,

√
2ε2/ν), and so

‖x̂(t)− x?‖ ≤ ε3 :=
√

2ε2/ν, for all t ≥ tε. (43)

Assume ε, η0, η1 are small enough that B̄(x?, ε3) ⊂ S. For any x and y in B̄(x?, ε3), we then
have

‖Hf (x)−Hf (y)‖ ≤ d‖Hf (x)−Hf (y)‖max ≤ d
3
2κ3‖x− y‖. (44)
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Using (44), for any x in B̄(x?, ε3)

‖Hf̂ (x)−Hf (x?)‖ ≤ ‖Hf̂ (x)−Hf (x)‖+ ‖Hf (x)−Hf (x?)‖

≤ η2 + d
3
2κ3‖x− x?‖

≤ η2 + d
3
2κ3ε3. (45)

We then apply Weyl’s inequality (Stewart and Sun, 1990, Cor. IV.4.9) to conclude that,
when η2 and ε3 are small enough, for all x in B̄(x?, ε3), the eigenvalues of Hf̂ (x) are all in

(−∞,−ν). We assume that ε, η0, η1, η2 are small enough that this is the case. This implies
that any critical point of f̂ in B̄(x?, ε3) is isolated and a local maximum of f̂ . Using (43) and
the compactness of B̄(x?, ε3), by Cantor’s intersection theorem K := ∩t≥tε{x̂(u) : u ≥ t}
is nonempty. In addition, K is composed of critical points of f̂ ; see Hirsch et al. (2004,
Section 9.3, Proposition, p. 206 and Theorem, p. 205) or Absil and Kurdyka (2006, Lemma
5). Therefore we conclude that K is a singleton, which we denote by x̂?. This is a critical
point of f̂ in B̄(x?, ε3) and is the limit of x̂(t) as t→∞. Moreover, x̂? is a local maximum
of f̂ .

Since our assumptions imply that x? is also a local maximum, we can apply Lemma 8
to bound ‖x̂? − x?‖. In our setting, applying the triangle inequality, we may take C8 =
max

{
1, 2√

ν ,
4κ
3ν

}
, where κ = κ3 + η3. Assume ε, η0, η1 are small enough that ε3 ≤ 1/C8.

Then, by (43) and Lemma 8, we conclude that ‖x̂?− x?‖ ≤ C8
√

2η0. Hence we have shown
that there exists a constant Q0 := Q0(f, ν) ≥ 1 such that, whenever max{η0, η1, η2} ≤ 1/Q0

and η3 ≤ Q0,

‖x̂? − x?‖ ≤ Q0
√
η0. (46)

Let H and Ĥ be short for Hf (x?) and Hf̂ (x̂?), respectively. We now bound ‖x̂(t)−x(t)‖
in two ways.

Bound for large t. We proceed with a linearization of the flows near the critical points.
Let ν > ν, but close enough that all the eigenvalues of H are still in (−∞,−ν). Note first
that x? is an interior point of S. Suppose that max{η0, η1, η2} ≤ 1/Q0 and η3 ≤ Q0 so that
(46) holds. By combining (45) and (46)

‖Ĥ−H‖ ≤ η2 + d
3
2κ3Q0

√
η0. (47)

Suppose in addition that η0 is small enough that x̂? is also an interior point to S, which
is possible by (46), and that ‖Ĥ −H‖ is small enough that Ĥ also has all its eigenvalues
in (−∞,−ν), which is possible by (47) and Weyl’s inequality for η0 and η2 small enough.
Then there exists r‡ > 0 such that

B̄(x?, r‡) ⊂ S and B̄(x̂?, r‡) ⊂ S,

and since x(t)→ x? and x̂(t)→ x̂? as t→∞, there exists a time t‡ > 0 such that

x(t) ∈ B̄(x?, r‡) ⊂ S and x̂(t) ∈ B̄(x̂?, r‡), for any t ≥ t‡.
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Letting x‡(t) = x(t)− x? and x̂‡(t) = x̂(t)− x̂?, by a Taylor expansion, for all t ≥ t‡ we
have

x′‡(t) = ∇f(x(t)) = Hx‡(t) +R(t), with ‖R(t)‖ ≤
√
dκ3
2 ‖x‡(t)‖

2 ; (48)

x̂′‡(t) = ∇f̂(x̂(t)) = Ĥ x̂‡(t) + R̂(t), with ‖R̂(t)‖ ≤
√
d(κ3+η3)

2 ‖x̂‡(t)‖2 . (49)

The difference gives

x′‡(t)− x̂′‡(t) = Hx‡(t)− Ĥx̂‡(t) +R(t)− R̂(t)

= H(x‡(t)− x̂‡(t)) + (H− Ĥ)x̂‡(t) +R(t)− R̂(t), (50)

and after integration between 0 and t > 0, we get

x‡(t)− x̂‡(t) = −etH(x? − x̂?) +

∫ t

0
e(t−s)H[(H− Ĥ)x̂‡(s) +R(s)− R̂(s)

]
ds. (51)

To check that, note that x‡(0)− x̂‡(0) = x? − x̂?, and by differentiating (51), we get

x′‡(t)− x̂′‡(t) = −HetH(x? − x̂?) + HetH
∫ t

0
e−sH

[
(H− Ĥ)x̂‡(s) +R(s)− R̂(s)

]
ds

+ (H− Ĥ)x̂‡(t) +R(t)− R̂(t). (52)

From (51), etH(x? − x̂?) may be expressed as

etH(x? − x̂?) = −(x‡(t)− x̂‡(t)) +

∫ t

0
e(t−s)H[(H− Ĥ)x̂‡(s) +R(s)− R̂(s)

]
ds. (53)

By reporting (53) in (52) we indeed obtain (50).
Using the triangle inequality in (51), and the fact that all the eigenvalues of H and Ĥ

are in (−∞,−ν) we then get by (48) and (49) that

‖x‡(t)− x̂‡(t)‖ ≤ e−νt‖x? − x̂?‖

+
√
d

∫ t

0
e−ν(t−s) [η2‖x̂‡(s)‖+ κ3

2 ‖x‡(s)‖
2 + κ3+η3

2 ‖x̂‡(s)‖2
]

ds.

By Lemma 6, max(‖x‡(t)‖, ‖x̂‡(t)‖) ≤ C6e
−νt for all t ≥ 0. We use this to bound the

integral above. We have∫ t

0
e−ν(t−s) [η2‖x̂‡(s)‖+ κ3

2 ‖x‡(s)‖
2 + κ3+η3

2 ‖x̂‡(s)‖2
]

ds

≤
∫ t

0
e−ν(t−s) [η2C6e

−νs + κ3
2 C

2
6e
−2νs + κ3+η3

2 C2
6e
−2νs

]
ds

≤ C6e
−νt
[
η2t+ (κ3 + η3)C6

1− e−νt

ν

]
.

Hence

‖x‡(t)− x̂‡(t)‖ ≤ e−νt‖x? − x̂?‖+
√
dC6e

−νt
[
η2t+ (κ3 + η3)C6

1− e−νt

ν

]
. (54)
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By the triangle inequality, ‖x(t)− x̂(t)‖ ≤ ‖x? − x̂?‖+ ‖x‡(t)− x̂‡(t)‖, and using (46) and
(54), we deduce that

‖x(t)− x̂(t)‖ ≤ (1 + e−νt)Q0
√
η0 +

√
dC6e

−νt
[
η2t+ (κ3 + η3)C6

1− e−νt

ν

]
, for all t ≥ t‡.

By increasing the constant factors as needed, we arrive at

‖x(t)− x̂(t)‖ ≤ Q1

(√
η0 + e−νt [η2t+ κ3 + η3]

)
, for all t ≥ 0, (55)

for some constant Q1 > 0.

Bound for small t. We also have the following refinement of (41). Since f is C3, there
exists ε > 0 such that all the eigenvalues of Hf (x) exceed −ν when x ∈ B̄(x?, ε). Note that
this implies that ∇f is Lipschitz on B̄(x?, ε) with constant ν.

Keeping ε > 0 fixed, let tε be such that x(t) ∈ B̄(x?, ε) and x̂(t) ∈ B̄(x̂?, ε/2), for all
t ≥ tε. Assume that η0 is small enough that ‖x̂? − x?‖ ≤ ε/2, which is possible by (46).
Then we also have x̂(t) ∈ B̄(x?, ε)

We may now apply Lemma 7 to get

‖x(t)− x̂(t)‖ ≤ η1

ν
eνt, ∀t ≥ tε. (56)

Since ε is fixed, by (41), for any 0 ≤ t ≤ tε, we have

‖x(t)− x̂(t)‖ ≤ η1√
dκ2

e
√
dκ2t ≤ e|

√
dκ2−ν|tε
√
dκ2

η1e
νt. (57)

Combining (56) and (57) we deduce that

‖x(t)− x̂(t)‖ ≤ Q2η1e
νt, ∀t ≥ 0, (58)

for some constant Q2.

We now combine (55) and (58), and use the fact that te−νt ≤ 1
ν−ν e

−νt for all t ≥ 0, to
arrive at

‖x(t)− x̂(t)‖ ≤ Q3 min
[√
η0 + e−νt, η1e

νt
]
, ∀t ≥ 0, (59)

for some constant Q3. We shall show that the bound (15) follows from (59). To verify this,
we start with

min
[√
η0 + e−νt, η1e

νt
]
≤ 2B(t), B(t) := min

[
max{√η0, e

−νt}, η1e
νt
]
.

Set t0 = 1
2ν log(1/η0) and note that

max{√η0, e
−νt} =

{
e−νt when t ≤ t0
√
η0 when t ≥ t0.

• When t ≥ t0, then we simply observe that B(t) ≤ η1/2
0 .
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• When t ≤ t0, we have B(t) = min
{
e−νt, η1e

νt
}

. Let t1 = 1
ν+ν log(1/η1). Note that the

map defined on [0,∞) by t 7→ min
{
e−νt, η1e

νt
}

is increasing over [0, t1], decreasing
over [t1,∞), and that

min
{
e−νt, η1e

νt
}

=

{
η1e

νt when t ≤ t1
e−νt when t ≥ t1.

◦ When t1 ≥ t0, B(t) ≤ B(t0) = η1e
νt0 = η1η

− ν
2ν

0 .

◦ When t1 < t0, then B(t) ≤ B(t1) = e−νt1 = η
ν
ν+ν

1

Since t0 ≤ t1 if, and only if, η1η
− ν

2ν

0 ≤ η
ν
ν+ν

1 , we conclude thatB(t) ≤ min
{
η

ν
ν+ν

1 , η1η
− ν

2ν

0

}
for all t ≤ t0.

Hence, we worked (59) into

sup
t≥0
‖x(t)− x̂(t)‖ ≤ 2Q3 max

{√
η0,min

[
ηδ1, η

δ−1
2δ

0 η1

]}
,

where δ = ν
ν+ν . We note that

√
η0 ≤ ηδ1 ⇐⇒ η

1
2δ
0 ≤ η1 ⇐⇒

√
η0 ≤ η1η

1
2
− 1

2δ
0 ⇐⇒ √η0 ≤ η

δ−1
2δ

0 η1

and that

ηδ1 ≤ η
δ−1
2δ

0 η1 ⇐⇒ η
1−δ
2δ

0 ≤ η1−δ
1 ⇐⇒ √η0 ≤ ηδ1.

Using these equivalences we deduce that

max
{√

η0,min
[
ηδ1, η

δ−1
2δ

0 η1

]}
= max

{√
η0, η

δ
1

}
.

4.4 Proof of Lemma 2

For any d-tuple β = (β1, . . . , βd) ∈ Nd, let |β| = β1 + · · ·+ βd, and let

∂βg(x) =
∂|β|

∂xβ11 . . . ∂xβdd
g(x) (60)

denote the β-th partial derivative of a function g : Rd → R. Let C be such that |∂βf(x)| ≤ C
for all x ∈ Rd and all β such that |β| ≤ 3.

Fix β ∈ Nd with |β| = ` ≤ 3. Since the partial derivatives of Φ up to the order 3 vanish
at infinity, and those of f are bounded, we obtain by integrating by parts

E
[
∂β f̂(x)

]
=

1

hd+`
E
[
∂βΦ

(
x−X
h

)]
=

1

hd

∫
Rd

Φ

(
x− u
h

)
∂βf(u)du

=

∫
Rd

Φ(u) ∂βf(x− hu)du.
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When ` = 3, we simply deduce that∣∣∣E[∂β f̂(x)
]
− ∂βf(x)

∣∣∣ ≤ ∣∣∣E[∂β f̂(x)
]∣∣∣+ C ≤ 2C,

using Jensen’s inequality.
When ` = 2, we use a Taylor expansion of order 1, to get∣∣∂βf(x− hu)− ∂βf(x)

∣∣ ≤ √dCh‖u‖, ∀x, u ∈ Rd,

and deduce that ∣∣∣E[∂β f̂(x)
]
− ∂βf(x)

∣∣∣ ≤ h√dC ∫
Rd
‖u‖Φ(u)du,

using the fact that Φ integrates to 1.
When ` ≤ 1, we use a Taylor expansion of order 2, to get∣∣∂βf(x− hu)− ∂βf(x) + h

(
∂βf

)(1)
(x)[u]

∣∣ ≤ dCh2‖u‖2, ∀x, u ∈ Rd,

and deduce that ∣∣∣E[∂β f̂(x)
]
− ∂βf(x)

∣∣∣ ≤ h2 dC

∫
Rd
‖u‖2Φ(u)du,

using the fact that Φ integrates to 1 and kills moments of order 1 by assumption (18).

4.5 Proof of Lemma 3

From Theorem 4.1 in Mason (2012), we immediately deduce the following. (Note that in
the statement of condition (G.iii) of Theorem 4.1 in Mason (2012), G should be corrected
to be G0).

Lemma 9 Let f be a density on Rd and let X ∼ f . Let G be a class of uniformly bounded
measurable functions Rd × (0, 1]→ R, such that

sup
g∈G

sup
h∈(0,1]

1

hd
E
[
g(X,h)2

]
<∞, (61)

and such that the class

G0 = {x 7→ g(x, h) : g ∈ G, h ∈ (0, 1)} (62)

is pointwise measurable and of VC-type. Then there exists a 0 < b0 < 1 such that if
X1, X2, . . . is an iid sequence from f ,

lim sup
n→∞

sup
g∈G

sup
logn
n
≤hd≤b0

√
n

hd log n

∣∣∣∣∣ 1n
n∑
i=1

g(Xi, h)− E[g(X,h)]

∣∣∣∣∣ <∞, almost surely.

(63)

For the definitions of VC-type and pointwise measurable, we refer to Mason (2012, Sec. 4.2)
or van der Vaart and Wellner (1996).

23



Arias-Castro, Mason and Pelletier

Remark 1 The assumption that the class G0 be pointwise measurable insures that the supre-
mum of functionals defined on G0 be measurable. Another condition that is often imposed
on a class of functions is image-Suslin measurable. For details see page 138 of de la Peña
and Giné (1999).

Let Φ be a kernel and f be a density as in Lemma 3, and let X ∼ f . Fixing β ∈ Nd
such that |β| ≤ 3, we apply this lemma to

G =
{

(x, h) 7→ ∂βΦ(u−xh ) : u ∈ Rd
}
.

For any x, u ∈ Rd and h ∈ (0, 1], ∣∣∂βΦ(u−xh )
∣∣ ≤ ‖∂βΦ‖∞,

so that G is uniformly bounded, and

E

[
∂βΦ

(
u−X
h

)2
]

=

∫
Rd
∂βΦ

(
u− x
h

)2

f(x)dx,

which by the change of variables v = u−x
h equals

hd
∫
Rd
∂βΦ(v)2f(u− hv)dv ≤ hd‖f‖∞‖∂βΦ‖∞

∫
Rd

∣∣∣∂βΦ(v)
∣∣∣dv, (64)

where ‖f‖∞, ‖∂βΦ‖∞, and
∫
Rd
∣∣∂βΦ(v)

∣∣ dv are finite by assumption. Hence G satisfies (61).
In addition, G0 is seen to be pointwise measurable by consideration of the subclass{

x 7→ ∂βΦ(u−xh ) : u ∈ Qd, h ∈ (0, 1] ∩Q
}
.

To see that G0 is of VC-type, notice that for any x = (x1, . . . , xd) ∈ Rd, ∂βΦ(x) =∏d
k=1 φ

(βk)
k (xk). By assumption, φ

(βk)
k is of bounded variation on R, so that by Nolan and

Pollard (1987, Lem 22) the class of functions given by

g0,k :=
{
s ∈ R 7→ φ

(βk)
k ( s−th ) : s ∈ R, 0 < h ≤ 1

}
is of VC-type. Then an application of Einmahl and Mason (2000, Lem A1) shows that the
class of functions G0, which is equivalently expressed as

G0 := {(u1, . . . , ud) 7→ g1(u1) . . . gd(ud) : gk ∈ g0,k, k = 1, . . . , d} ,

is of VC-type.
Therefore, the conditions of Lemma 9 are met, so that we can assert that (63) holds.

Noticing that

1

n

n∑
i=1

∂βΦ(u−Xih ) = h`+d∂βfn,h(u),

and consequently
E
[
∂βΦ(u−Xh )

]
= h`+d E

[
∂βfn,h(u)

]
,

we see that (63) yields

lim sup
n→∞

sup
u∈Rd

sup
logn
n
≤hd≤b0

√
n

hd log n
h`+d

∣∣∣∂βfn,h(u)− E
[
∂βfn,h(u)

]∣∣∣ <∞, almost surely,

which is exactly (20).
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4.6 Proof of Theorem 3

As in the proofs of Theorems 1 and 2, we may assume without loss of generality that
Lf (f(x0/2)) ⊂ B̄(x0, 3r0), with r0 = supt≥0 ‖x(t) − x0‖, which implies that Lf (f(x0/2) is
compact. In this subsection,

S = Lf (f(x0)/2), κ` = κ`(f, S), f̂ = f̂n,h, (65)

for short.
For any integer 0 ≤ ` ≤ 2, we let

η?` = sup
x∈S

∥∥f̂ (`)(x)− f `(x)
∥∥ , η` = sup

x∈S

∥∥( log f̂
)(`)

(x)−
(

log f
)(`)

(x)
∥∥ ,

where the norm used is defined in (8). (Keep in mind that we are suppressing in the notation

f̂ (`) and η` the dependence on n and h.) From (19) and (20), we see that, since nhd+6

logn →∞,
for any 0 ≤ ` ≤ 2, η?` → 0 almost surely as n → ∞ while η?3 = O(1) almost surely. Since
f(x) ≥ f(x0)/2 > 0 for all x in S, and since η?0 → 0 almost surely, then almost surely, for
all n large enough, log f̂(x) is well-defined for all x in S. We have

∂

∂xi
log f(x) =

1

f

∂

∂xi
f(x),

∂

∂xi
f−k(x) = −kf−(k+1)(x)

∂

∂xi
f(x), (66)

and similarly for f̂ almost surely for all n large enough, using the fact that f(x) ≥ f(x0)/2
for all x in S once again. We see using (66) that for each 0 ≤ ` ≤ 3 and β ∈ Nd with |β| = `
there is a continuously differentiable function F`,β defined on (0,∞)×Rd×· · ·×Rd`, where
Rd` is suppressed if ` = 0, such that for all x ∈ S

∂β log f(x) = F`,β

(
f(x), ∂αf(x), α ∈ Nd with |α| = k, k = 1, . . . , `

)
,

where with some abuse of notation, ∂αf(x), α ∈ Nd with |α| = k, k ≥ 1, represents a
dk-vector in Rdk, and, similarly, almost surely, for all large enough n

∂β log f̂(x) = F`,β

(
f̂(x), ∂αf̂(x), α ∈ Nd with |α| = k, k = 1, . . . , `

)
.

Observe that the set of points{(
f(x), ∂αf(x), α ∈ Nd with |α| = k, k = 1, . . . , `

)
: x ∈ S

}
(67)

lies in a compact subset of (0,∞)× Rd × · · · × Rd`, and almost surely for all large enough
n the same is true for the set of points formed as in (67) with f replaced by f̂ . Since a
compact subset of (0,∞)×Rd× · · ·×Rd` can be chosen to include both of these sets, using
the mean value theorem we see that for some constant C(`, β) > 0

sup
x∈S

∣∣∣∂β log f(x)− ∂β log f̂(x)
∣∣∣

≤ C(`, β) max

{
sup
x∈S

∣∣∣∂αf(x)− ∂αf̂(x)
∣∣∣ : α ∈ Nd with |α| = k, k = 0, . . . , `

}
.
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Using (10) this proves that there exists a constant C > 0 such that almost surely for all n
large enough

η` ≤ C(η?0 + · · ·+ η?` ), 0 ≤ ` ≤ 3. (68)

Hence, almost surely, η` → 0 for all ` = 0, 1, 2 and lim sup η3 < ∞. We are then
in a position to apply Corollary 1. Noting that

√( logn
nhd+2

)
= o(h2) under the condition

nhd+6

logn →∞, and using the inequalities in (68), almost surely for all n large enough, η0 ≤ Ch2

and η1 ≤ Ch2 for some constant C > 1, and since δ < 1/2, almost surely, for all n large
enough, max{√η0, η

δ
1} ≤ Ch2δ. We conclude by applying Corollary 1.
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