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Abstract
Following Hartigan (1975), a cluster is defined as a connected component of thet-level set of the
underlying density, that is, the set of points for which the density is greater thant. A clustering
algorithm which combines a density estimate with spectral clustering techniques is proposed. Our
algorithm is composed of two steps. First, a nonparametric density estimate is used to extract the
data points for which the estimated density takes a value greater thant. Next, the extracted points
are clustered based on the eigenvectors of a graph Laplacianmatrix. Under mild assumptions,
we prove the almost sure convergence in operator norm of the empirical graph Laplacian operator
associated with the algorithm. Furthermore, we give the typical behavior of the representation
of the data set into the feature space, which establishes thestrong consistency of our proposed
algorithm.

Keywords: spectral clustering, graph, unsupervised classification,level sets, connected compo-
nents

1. Introduction

The aim of data clustering, or unsupervised classification, is to partition a dataset into several
homogeneous groups relatively separated one from each other with respect to a certain distance or
notion of similarity. There exists an extensive literature on clustering methods,and we refer the
reader to Anderberg (1973), Hartigan (1975) and McLachlan and Peel (2000), Chapter 10 in Duda
et al. (2000), and Chapter 14 in Hastie et al. (2001) for general materials on the subject. In particular,
popular clustering algorithms, such as Gaussian mixture models or k-means, have proved useful in
a number of applications, yet they suffer from some internal and computational limitations. Indeed,
the parametric assumption at the core of mixture models may be too stringent, while the standard
k-means algorithm fails at identifying complex shaped, possibly non-convex, clusters.

The class ofspectral clusteringalgorithms is presently emerging as a promising alternative,
showing improved performance over classical clustering algorithms on several benchmark problems
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and applications (see, e.g., Ng et al., 2002; von Luxburg, 2007). An overview of spectral clustering
algorithms may be found in von Luxburg (2007), and connections with kernel methods are exposed
in Fillipone et al. (2008). The spectral clustering algorithm amounts at embedding the data into a
feature space by using the eigenvectors of the similarity matrix in such a way that the clusters may
be separated using simple rules, for example, a separation by hyperplanes. The core component of
the spectral clustering algorithm is therefore the similarity matrix, or certain normalizations of it,
generally called graph Laplacian matrices; see Chung (1997). Graph Laplacian matrices may be
viewed as discrete versions of bounded operators between functionalspaces. The study of these
operators has started out recently with the works by Belkin et al. (2004);Belkin and Niyogi (2005),
Coifman and Lafon (2006), Nadler et al. (2006), Koltchinskii (1998),Giné and Koltchinskii (2006),
Hein et al. (2007) and Rosasco et al. (2010), among others.

In the context of spectral clustering, the convergence of the empirical graph Laplacian operators
has been established in von Luxburg et al. (2008). Their results imply the existence of an asymptotic
partition of the support of the underlying distribution of the data as the numberof samples goes to
infinity. However this theoretical partition results from a partition in a feature space, that is, it is the
pre-image of a partition of the feature space by the embedding mapping. Therefore interpreting the
asymptotic partition with respect to the underlying distribution of the data remains largely an open
and challenging question. Similar interpretability questions also arise in the related context of kernel
methods where the data is embedded in a feature space. For instance, while itis well-known that the
populark-means clustering algorithm leads to an optimal quantizer of the underlying distribution
(MacQueen, 1967; Pollard, 1981; Linder, 2002), “kernelized” versions of thek-means algorithm
allow to separate groups using nonlinear decision rules but are more difficult to interpret.

The rich variety of clustering algorithms raises the question of the definition ofa cluster, and as
pointed out in von Luxburg and Ben-David (2005) and in Garcı́a-Escudero et al. (2008), there exists
many such definitions. Among these, perhaps the most intuitive and precise definition of a cluster
is the one introduced by Hartigan (1975). Suppose that the data is drawn from a probability density
f on R

d and lett be a positive number in the range off . Then a cluster in the sense of Hartigan
(1975) is a connected component of the uppert-level set

L(t) =
{

x∈ R
d : f (x)≥ t

}
.

This definition has several advantages. First, it is geometrically simple. Second, it offers the pos-
sibility of filtering out possibly meaningless clusters by keeping only the observations falling in a
region of high density. This proves useful, for instance, in the situation where the data exhibits a
cluster structure but is contaminated by a uniform background noise.

In this context, the levelt should be considered as a resolution level for the data analysis. For
instance, when the thresholdt is taken equal to 0, the groups in the sense of Hartigan (1975) are the
connected components of the support of the underlying distribution, while ast increases, the clusters
concentrate in a neighborhood of the principal modes of the densityf . Several clustering algorithms
deriving from Hartigan’s definition have been introduced building. In Cuevas et al. (2000, 2001),
and in the related work by Azzalini and Torelli (2007), clustering is performed by estimating the
connected components ofL(t). Hartigan’s definition is also used in Biau et al. (2007) to define an
estimate of the number of clusters based on an approximation of the level set by a neighborhood
graph.

In the present paper, we adopt the definition of a cluster of Hartigan (1975), and we propose
and study a spectral clustering algorithm on estimated level sets. The algorithm is composed of
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two operations. Using the sampleX1, . . . ,Xn of vectors ofRd, we first construct a nonparametric
density estimatêfn of the unknown densityf . Next, given a positive numbert, this estimate is used
to extract those observations for which the estimated density exceeds the fixed threshold, that is,
the observations for whicĥfn(Xi) ≥ t. In the second step of the algorithm, we perform a spectral
clustering of the extracted points. The remaining data points are then left unlabeled.

Our proposal is to study the asymptotic properties of this algorithm. In the wholestudy, the
density estimatêfn is arbitrary but supposed consistent, and the thresholdt is fixed in advance.
For the spectral clustering part of the algorithm, we consider the setting where the kernel function,
or similarity function, between any two pairs of observations is non negativeand with a compact
support of diameter 2h, for some fixed positive real numberh. Our contribution contain two sets of
results.

In the first set of results, we establish the almost-sure convergence in operator norm of the
empirical graph Laplacian on the estimated level set. In von Luxburg et al. (2008), the authors
prove the collectively compact convergence of the empirical operator, acting on the Banach space
of continuous functions on some compact set. Finite sample bounds in Hilbert-Schmidt norms on
Sobolev spaces are obtained in the paper by Rosasco et al. (2010). Inour result, the empirical
operator is acting on a Banach subspace of the Holder spaceC0,1 of Lipschitz functions, which we
equip with a Sobolev norm. This operator norm convergence is more amenable than the slightly
weaker notion of convergence established in von Luxburg et al. (2008), and holds for any value
of the scale parameterh, but the functional space that we consider is smaller. As in the related
works referenced above, the operator norm convergence is derived using results from the theory of
empirical processes to prove that certain classes of functions satisfy a uniform law of large numbers.
We also rely on geometrical auxiliary results to obtain the convergence of thepreprocessing step of
the algorithm. Under mild regularity assumptions, we use the fact that the topology of the level set
L(t) changes only when the thresholdt passes a critical value off . This allow us to define random
graph Laplacian operators acting on a fixed space of functions, with large probability.

In the second set of results, we study the convergence of the spectrumof the empirical operator,
as a corollary of the operator norm convergence. Depending on the values of the scale parameter
h, we characterize the properties of the asymptotic partition induced by the clustering algorithm.
First, we assume thath is lower than the minimal distance between any two connected components
of thet-level set. Under this condition, we prove that the embedded data points concentrate on sev-
eral isolated points, each of whose corresponds to a connected component of the level set, that is,
observations belonging to the same connected component of the level set are mapped onto the same
point in the feature space. As a consequence, in the asymptotic regime, anyreasonable clustering
algorithm applied on the transformed data partitions the observations according to the connected
components of the level set. In this sense, recalling Hartigan’s (1975) definition of a cluster, these
results imply that the proposed algorithm is strongly consistent and that, asymptotically, observa-
tions ofL(t) are assigned to the same cluster if and only if they fall in the same connected com-
ponent ofL(t). These properties follow from the ones of the continuous (i.e., population version)
operator, which we establish by using arguments related to a Markov chain on a general state space.
The underlying fact is that the normalized empirical graph Laplacian defines a random walk on the
extracted observations, which converges to a random walk onL(t). Then, asymptotically, when the
scale parameter is lower than the minimal distance between the connected components ofL(t), this
random walk cannot jump from one connected component to one another.Next, by exploiting the
continuity of the operators in the scale parameterh, we obtain similar consistency results whenh
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is slightly greater than the minimal distance between two connected components ofL(t). In this
case, the embedded data points concentrates in several non-overlapping cubes, each of whose cor-
responds to a connected component ofL(t). This result holds wheneverh is smaller than a certain
critical valuehmax, which depends only on the underlying densityf .

Finally, let us note that our consistency results hold for any value of the thresholdt different
from a critical value of the densityf , which assume to be twice continuously differentiable. Under
the stronger assumption thatf is p times continuously differentiable, withp ≥ d, Sard’s lemma
imply that the set of critical values off has Lebesgue measure 0, so that the consistency would
hold for almost allt. The special limit caset = 0 corresponds to performing a clustering on all the
observations, and our results imply the convergence of the clustering to thepartition of the support
of the density into its connected components, for a suitable choice of the scaleparameter. The proofs
could be simplified in this setting, though, since no pre-processing step wouldbe needed. Let us
mention that this asymptotic partition could also be derived from the results in vonLuxburg et al.
(2008). At last, we obtain consistency in the sense of Hartigan’s definitionwhen the correct number
of clusters is requested, which corresponds to the number of connectedcomponents ofL(t), and
when the similarity function has a compact support . Hence several questions remain largely open
which are discussed further in the paper.

The paper is organized as follows. In Section 2, we start by introducing thenecessary notations
and assumptions. Then we define the spectral clustering algorithm on estimated level sets, and
we follow by introducing the functional operators associated with the algorithm. In Section 3, we
study the almost-sure convergence in operator norm of the random operators, starting with the un-
normalized empirical graph Laplacian operator. The main convergence result of the normalized
operator is stated in Theorem 4. Section 4 contains the second set of results on the consistency
of the clustering algorithm. We start by studying the properties of the limit operator in the case
where the scale parameterh is lower than the minimal distance between two connected components
of L(t). The convergence of the spectrum, and the consistency of the algorithm, isthen stated in
Theorem 7. This result is extended in Theorem 10 to allow for larger values of h. We conclude this
section with a discussion on possible extensions and open problems. The proofs of these theorems
rely on several auxiliary technical lemmas which are collected in Sections 5. Finally, to make the
paper self contained, materials and some facts from the geometry of level sets, functional analysis,
and Markov chains are exposed in Appendices A, B, and C, respectively, at the end of the paper.

2. Spectral Clustering Algorithm

In this section we give a description of the spectral clustering algorithm on level sets that is suitable
for our theoretical analysis.

2.1 Mathematical Setting and Assumptions

Let {Xi}i≥1 be a sequence of i.i.d. random vectors inR
d, with common probability measureµ.

Suppose thatµ admits a densityf with respect to the Lebesgue measure onR
d. The t-level setof f

is denoted byL(t), that is,

L(t) :=
{

x∈ R
d : f (x)≥ t

}
,
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for all positive levelt, and givena ≤ b, Lb
a denotes the set{x ∈ R

d : a ≤ f (x) ≤ b}. The dif-
ferentiation operator with respect tox is denoted byD. We assume thatf satisfies the following
conditions.

Assumption 1. (i) f is of classC 2 onRd; (ii) ‖Dx f‖> 0 on the set{x∈R
d : f (x) = t};

(iii) f , D f , andD2 f are uniformly bounded onRd.

Note that under Assumption 1,L(t) is compact whenevert belongs to the interior of the range off .
Moreover,L(t) has a finite numberℓ of connected componentsC j , j = 1, . . . , ℓ. For ease of notation,
the dependence ofC j on t is omitted. The minimal distance between the connected components of
L(t) is denoted bydmin, that is,

dmin := inf
i 6= j

dist
(
Ci ,C j

)
. (1)

Let f̂n be a consistent density estimate off based on the random sampleX1, . . . ,Xn. Thet-level
set of f̂n is denoted byLn(t), that is,

Ln(t) :=
{

x∈ R
d : f̂n(x)≥ t

}
.

Let J(n) be the set of integers defined by

J(n) :=
{

j ∈ {1, . . . ,n} : f̂n(Xj)≥ t
}
.

The cardinality ofJ(n) is denoted byj(n).
Let k : Rd → R+ be a fixed function. The unit ball ofRd centered at the origin is denoted byB,

and the ball centered atx∈ R
d and of radiusr is denoted byx+ rB. We assume throughout that the

functionk satisfies the following set of conditions.

Assumption 2. (i) k is of classC 2 onR
d; (ii) the support ofk is B; (iii) k is uniformly

bounded from below onB/2 by some positive number; and(iv) k(−x) = k(x) for all
x∈ R

d.

Let h be a positive number. We denote bykh : Rd → R+ the map defined bykh(u) := k(u/h).

2.2 Algorithm

The first ingredient of our algorithm is thesimilarity matrixKn,h whose elements are given by

Kn,h(i, j) := kh(Xj −Xi),

and where the integersi and j range over the random setJ(n). HenceKn,h is a random matrix
indexed byJ(n)× J(n), whose values depend on the functionkh, and on the observationsXj lying
in the estimated level setLn(t). Next, we introduce the diagonalnormalization matrixDn,h whose
diagonal entries are given by

Dn,h(i, i) := ∑
j∈J(n)

Kn,h(i, j), i ∈ J(n).

Note that the diagonal elements ofDn,h are positive sinceKn,h(i, i)> 0.
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The spectral clustering algorithm is based on the matrixQn,h defined by

Qn,h := D−1
n,hKn,h.

Observe thatQn,h is a random Markovian transition matrix. Note also that the (random) eigenvalues
of Qn,h are real numbers and thatQn,h is diagonalizable. Indeed the matrixQn,h is conjugate to the

symmetric matrixSn,h := D−1/2
n,h Kn,hD−1/2

n,h since we may write

Qn,h = D−1/2
n,h Sn,hD1/2

n,h .

Moreover, the inequality‖Qn,h‖∞ ≤ 1 implies that the spectrumσ(Qn,h) is a subset of[−1;+1].
Let 1= λn,1 ≥ λn,2 ≥ . . . ≥ λn, j(n) ≥ −1 be the eigenvalues ofQn,h, where in this enumeration, an
eigenvalue is repeated as many times as its multiplicity.

To implement the spectral clustering algorithm, the data points of the partitioning problem are
first embedded intoRℓ by using the eigenvectors ofQn,h associated with theℓ largest eigenvalues,
namelyλn,1, λn,2, . . .λn,ℓ. More precisely, fix a collectionVn,1, Vn,2, . . . ,Vn,ℓ of such eigenvectors
with components respectively given byVn,k = {Vn,k, j} j∈J(n), for k= 1, . . . , ℓ. Then thej th data point,
for j in J(n), is represented by the vectorρn(Xj) of the feature spaceRℓ defined byρn(Xj) :=
{Vn,k, j}1≤k≤ℓ. At last, the embedded points are partitioned using a classical clustering method, such
as the k-means algorithm for instance.

2.3 Functional Operators Associated With the Matrices of the Algorithm

As exposed in the Introduction, some functional operators are associated with the matrices acting
onC

J(n) defined in the previous paragraph. The link between matrices and functional operators is
provided by the evaluation map defined in (3) below. As a consequence, asymptotic results on the
clustering algorithm may be derived by studying first the limit behavior of these operators.

To this aim, let us first introduce some additional notation. ForD a subset ofRd, let W(D)
be the Banach space of complex-valued, bounded, and continuously differentiable functions with
bounded gradient, endowed with the norm

‖g‖W := ‖g‖∞ +‖Dg‖∞.

Consider the non-oriented graph whose vertices are theXj ’s for j ranging inJ(n). The similarity
matrix Kn,h gives random weights to the edges of the graph and the random transition matrix Qn,h

defines a random walk on the vertices of a random graph. Associated withthis random walk is the
transition operatorQn,h : W

(
Ln(t)

)
→W

(
Ln(t)

)
defined for any functiong by

Qn,hg(x) :=
∫
Ln(t)

qn,h(x,y)g(y)P
t
n(dy).

In this equation,Pt
n is the discrete random probability measure given by

P
t
n :=

1
j(n) ∑

j∈J(n)

δXj ,

and

qn,h(x,y) :=
kh(y−x)
Kn,h(x)

, whereKn,h(x) :=
∫
Ln(t)

kh(y−x)Pt
n(dy). (2)
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In the definition ofqn,h, we use the convention that 0/0= 0, but this situation does not occur in the
proofs of our results.

Given theevaluation mapπn : W
(
Ln(t)

)
→ C

j(n) defined by

πn(g) :=
{

g(Xj)
}

j∈J(n), (3)

the matrixQn,h and the operatorQn,h are related byQn,h ◦ πn = πn ◦Qn,h. Using this relation,
asymptotic properties of the spectral clustering algorithm may be deduced from the limit behavior
of the sequence of operators{Qn,h}n. The difficulty, though, is thatQn,h acts onW

(
Ln(t)

)
andLn(t)

is a random set which varies with the sample. For this reason, we introduce asequence of operators
Q̂n,h acting onW

(
L(t)

)
and constructed fromQn,h as follows.

First of all, recall that under Assumption 1, the gradient off does not vanish on the set{x ∈
R

d : f (x) = t}. Since f is of classC 2, a continuity argument implies that there existsε0 > 0 such
thatL t+ε0

t−ε0
contains no critical points off . Under this condition, Lemma 17 states thatL(t + ε) is

diffeomorphic toL(t) for everyε such that|ε| ≤ ε0. In all of the following, it is assumed thatε0 is
small enough so that

ε0/α(ε0)< h/2, whereα(ε0) := inf
{
‖D f (x)‖; x∈ L t

t−ε0

}
. (4)

Let {εn}n be a sequence of positive numbers such thatεn ≤ ε0 for eachn, andεn → 0 asn→ ∞. In
Lemma 17 an explicit diffeomorphismϕn carryingL(t) toL(t − εn) is constructed, that is,

ϕn : L(t)
∼=−→ L(t − εn).

The diffeomorphismϕn induces the linear operatorΦn :W
(
L(t)

)
→W

(
L(t−εn)

)
defined byΦng=

g◦ϕ−1
n .

Second, letΩn be the probability event defined by

Ωn =
[
‖ f̂n− f‖∞ ≤ εn

]
∩
[
inf
{
‖D f̂n(x)‖,x∈ L t+ε0

t−ε0

}
≥ 1

2
‖D f‖∞

]
.

Note that on the eventΩn, the following inclusions hold:

L(t + εn)⊂ Ln(t)⊂ L(t − εn).

We assume that the indicator function1Ωn tends to 1 almost surely asn → ∞, which is satisfied
by common density estimateŝfn under mild assumptions. For instance, consider a kernel density
estimate with a Gaussian kernel. It is a classical exercise to prove that‖ f̂n−E f̂n‖∞ converges to 0
almost surely asn goes to infinity (see, e.g., Example 38 in Pollard, 1984, p. 35, or Chapter 3 in
Prakasa Rao, 1983) under appropriate conditions on the bandwidth sequence. Moreover, under the
conditions onf in Assumption 1, the norm of the gradient off is uniformly bounded onRd, so
by using a Taylor expansion, it is easy to prove that the bias term‖E f̂n− f‖∞ → 0 as well. Hence
‖ f̂n− f‖∞ → 0 almost surely. Furthermore, under Assumption 1,‖D2 f‖ is uniformly bounded on
R

d so the same reasoning leads to the almost sure convergence to 0 of‖D f̂n −D f‖∞. Together,
these facts imply that1Ωn → 1 almost surely asn→ ∞.

We are now in a position to define the operatorQ̂n,h : W
(
L(t)

)
→W

(
L(t)

)
. On the eventΩn,

for all functiong in W
(
L(t)

)
, we defineQ̂n,hg by the relation

Q̂n,hg(x) =
1

j(n) ∑
j∈J(n)

qn,h(ϕn(x),Xj)g
(
ϕ−1

n (Xj)
)
, for all x∈ L(t), (5)
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and we extend the definition of̂Qn,h to the whole probability space by setting it to the null operator
on the complementΩc

n of Ωn, that is, onΩc
n, the functionQ̂n,hg is identically zero for eachg ∈

W
(
L(t)

)
. With a slight abuse of notation, we may note thatQ̂n,h = Φ−1

n Qn,hΦn, so that essentially,

the operatorŝQn,h andQn,h are conjugate and have equal spectra, which are in turn related to the
spectrum of the matrixQn,h. This is made precise in Proposition 1 below.

Proposition 1 On the eventΩn, the spectrum of the functional operator iŝQn,h is σ(Q̂n,h) = {0}∪
σ(Qn,h). Moreover, if ifλ 6= 0, the eigenspaces are isomorphic, that is,

πnΦn : N(Q̂n,h−λ)
∼=−→ N(Qn,h−λ),

whereπnΦn acts on W
(
L(t)

)
asφnΦng(x) = g

(
ϕ−1

n (x)
)
.

Proof From Equation (5), the rangeR(Q̂n,h) of Q̂n,h is spanned by the finite collection of functions

f j : L(t) → C

x 7→ qn,h(ϕn(x),Xj),

for all j ∈ J(n). Moreover, these functions form a basis ofR(Q̂n,h). To show this, letV be a vector
in C

J(n) such that

∑
j∈J(n)

Vj f j(x) = 0 for all x∈ L(t).

By definition ofqn,h, settingy= ϕn(x), we have

∑
j∈J(n)

Vj
kh(y−Xj)

Kn,h(y)
= 0 for all y∈ L(t − εn).

Since the support ofkh is hB, the support of the functionKn,h is equal to
⋃

j∈J(n)(Xj +hB), and since

kh is positive, it follows thatVj = 0 for all j in J(n). Hence{ f j : j ∈ J(n)} is a basis ofR(Q̂n,h).
Now let g be an eigenfunction of̂Qn,h associated with an eigenvalueλ 6= 0. Then for allx in

L(t)
1

j(n) ∑
j∈J(n)

qn,h
(
ϕn(x),Xj

)
g
(
ϕ−1

n (Xj)
)
= λg(x). (6)

Since we consider a non-zero eigenvalue,g is in the range of̂Qn,h, and since the functions{ f j : j ∈
J(n)} form a basis ofR(Q̂n,h), there exists a unique vectorV = {Vj} j∈J(n) ∈ C

j(n) such that

g(x) =
1

λ j(n) ∑
j∈J(n)

Vjqn,h(ϕn(x),Xj), x∈ L(t).

ThereforeVj = g
(
ϕ−1

n (Xj)
)

for all j in J(n). Moreover, by evaluating (6) at anyx= ϕ−1
n (Xi) with

i ∈ J(n),

∑
j∈J(n)

qn,h
(
Xi ,Xj

)
g
(
ϕ−1

n (Xj)
)
= λg

(
ϕ−1

n (Xi)
)
,

which implies thatQn,hV = λV. Consequently,V is an eigenvector ofQn,h associated with the
eigenvalueλ. Hence

σ(Q̂n,h)⊂ σ(Qn,h)∪{0}, (7)
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and by unicity ofV, it follows that the mapπnΦn : N(Q̂n,h−λ)−→ N(Qn,h−λ) is injective.
Conversely, letV be an eigenvector of the matrixQn,h associated with a non-zero eigenvalueλ.

Consider the functiong of W
(
L(t)

)
defined by

g(x) =
1

λ j(n) ∑
j∈J(n)

Vjqn,h(ϕn(x),Xj), for all x∈ L(t).

Observe that for allj in J(n),

g
(
ϕ−1

n (Xj)
)
=

1
λ j(n) ∑

j ′∈J(n)

qn,h(Xj ,Xj ′)Vj ′ by definition ofg,

=
1

λ j(n) ∑
j ′∈J(n)

j(n)
Kn,h( j)

kh(Xj ′ −Xj)Vj ′ by definition ofKn,h andqn,h,

=
1
λ
(
Qn,hV

)
j =Vj sinceV is an eigenvector.

Hence it follows that for allx∈ L(t),

Q̂n,hg(x) =
1

j(n) ∑
j∈J(n)

qn,h(ϕn(x),Xj)g
(
ϕ−1

n (Xj)
)

using (5)

=
1

j(n) ∑
j∈J(n)

qn,h(ϕn(x),Xj)Vj sinceg
(
ϕ−1

n (Xj)
)
=Vj .

= λg(x).

Consequently,

σ(Qn,h)⊂ σ(Q̂n,h), (8)

and the mapπnΦn : N(Q̂n,h−λ)−→ N(Qn,h−λ) is surjective. Combining (7) and (8), and since 0
belongs toσ(Qn,h), we obtain the equality

σ(Q̂n,h) = {0}∪σ(Qn,h).

At last, sinceπnΦn is both injective and surjective, the subspacesN(Q̂n,h−λ) andN(Qn,h−λ) are
isomorphic for anyλ 6= 0.

Remark 2 Albeit the relevant part of̂Qn,h is defined onΩn for technical reasons, this does not bring
any difficulty as long as one is concerned with almost sure convergence. To see this, let(Ω,A ,P) be
the probability space on which the Xi ’s are defined. Denote byΩ∞ the event on which1Ωn tends to
1, and recall that P(Ω∞) = 1 by assumption. Thus, for everyω ∈ Ω, there exists a random integer
n0(ω) such that, for each n≥ n0(ω), ω lies inΩn. Besides n0(ω) is finite onΩ∞. Hence in particular,
if {Zn} is a sequence of random variables such that Zn1Ωn converges almost surely to some random
variable Z∞, then Zn → Z∞ almost surely.
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3. Operator Norm Convergence

In this section, we start by establishing the uniform convergence of an unnormalized empirical
functional operator. The main operator norm convergence result (Theorem 4) is stated in Section 3.2.
The proofs of these theorems rely on several auxiliary lemmas which are stated and proved in
Section 5.

3.1 Unnormalized Operators

Let r : L(t − ε0)×R
d → R be a given function. Define the linear operatorsRn andR onW

(
L(t)

)

respectively by

Rng(x) :=
∫
Ln(t)

r
(
ϕn(x),y

)
g
(
ϕ−1

n (y)
)
P

t
n(dy), and Rg(x) :=

∫
L(t)

r(x,y)g(y)µt(dy).

Proposition 3 Assume the following conditions on the function r:
(i) r is continuously differentiable with compact support ;
(ii) r is uniformly bounded onL(t − ε0)×R

d, that is,‖r‖∞ < ∞ ;
(iii) the differential Dxr of the function r with respect to x is uniformly bounded onL(t − ε0)×R

d,
that is,‖Dxr‖∞ := sup

{
‖Dxr(x,y)‖ : (x,y) ∈ L(t − ε0)×R

d
}
< ∞.

Then, as n→ ∞,
sup
{∥∥Rng−Rg

∥∥
∞ : ‖g‖W ≤ 1

}
→ 0 almost surely.

The key argument for proving Proposition 3 is that the collection of functions
{

y 7→ r(x,y)g(y)1L(t)(y) : x∈ L(t), ‖g‖W(L(t)) ≤ 1
}

is Glivenko-Cantelli, which is proved in Lemma 13. Let us recall that a collectionF of functions is
said to be Glivenko-Cantelli, or to satisfy a uniform law of large number, if

sup
g∈F

∣∣∣∣∣
1
n

n

∑
i=1

g(Xi)−E[X]

∣∣∣∣∣→ 0 almost surely,

whereX,X1,X2, . . . are i.i.d. random variables.
Proof In all this proof, we shall use the following convention: given a functiong defined only on
some subsetD of Rd, for any subsetA ⊂D, and anyx∈R

d, the notationg(x)1A(x) stands forg(x)
is x∈ A and for 0 otherwise. Set

Sng(x) :=
1

µ(L(t))
1
n

n

∑
i=1

r
(
ϕn(x),Xi

)
g
(
ϕ−1

n (Xi)
)
1Ln(t)(Xi),

Tng(x) :=
1

µ
(
L(t)

) 1
n

n

∑
i=1

r
(
ϕn(x),Xi

)
g(Xi)1L(t)(Xi),

Ung(x) :=
1

µ
(
L(t)

) 1
n

n

∑
i=1

r
(
x,Xi

)
g(Xi)1L(t)(Xi).

and consider the inequality
∣∣Rng(x)−Rg(x)

∣∣≤
∣∣Rng(x)−Sng(x)

∣∣+
∣∣Sng(x)−Tng(x)

∣∣
+
∣∣Tng(x)−Ung(x)

∣∣+
∣∣Ung(x)−Rg(x)

∣∣, (9)

358



SPECTRAL CLUSTERING ONLEVEL SETS

for all x∈ L(t) and allg∈W
(
L(t)

)
.

The first term in (9) is bounded uniformly by

∣∣Rng(x)−Sng(x)
∣∣≤
∣∣∣∣

n
j(n)

− 1

µ
(
L(t)

)
∣∣∣∣‖r‖∞‖g‖∞

and sincej(n)/n tends toµ(L(t)) almost surely asn→ ∞, we conclude that

sup
{∥∥Rng−Sng

∥∥
∞ : ‖g‖W ≤ 1

}
→ 0 a.s. asn→ ∞. (10)

For the second term in (9), we have

|Sng(x)−Tng(x)| ≤ ‖r‖∞

µ
(
L(t)

) 1
n

n

∑
i=1

∣∣g
(
ϕ−1

n (Xi)
)
1Ln(t)(Xi)−g(Xi)1L(t)(Xi)

∣∣

=
‖r‖∞

µ
(
L(t)

) 1
n

n

∑
i=1

gn(Xi), (11)

wheregn is the function defined on the whole spaceR
d by

gn(x) =
∣∣∣g
(
ϕ−1

n (x)
)
1Ln(t)(x)−g(x)1L(t)(x)

∣∣∣.

Consider the partition ofRd given byRd = B1,n∪B2,n∪B3,n∪B4,n, where

B1,n := Ln(t)∩L(t), B2,n := Ln(t)∩L(t)c,
B3,n := Ln(t)c∩L(t), B4,n := Ln(t)c∩L(t)c.

The sum overi in (11) may be split into four parts as

1
n

n

∑
i=1

gn(Xi) = I1(x,g)+ I2(x,g)+ I3(x,g)+ I4(x,g) (12)

where

Ik(x,g) :=
1
n

n

∑
i=1

gn(Xi)1{Xi ∈ Bk,n}.

First, I4,n(x,g) = 0 sincegn is identically 0 onB4,n. Second,

I2(x,g)+ I3(x,g)≤ ‖g‖∞
1
n

n

∑
i=1

1L(t)∆Ln(t)(Xi) (13)

Applying Lemma 11 together with the almost sure convergence of1Ωn to 1, we obtain that

1
n

n

∑
j=1

1L(t)∆Ln(t)(Xj)→ 0 almost surely. (14)

Third,

I1(x,g)≤ sup
x∈L(t)

∣∣∣∣g
(
ϕ−1

n (x)
)
−g(x)

∣∣∣∣≤ ‖Dxg‖∞ sup
x∈L(t)

‖ϕ−1
n (x)−x‖

≤ ‖Dxg‖∞ sup
x∈L(t)

‖x−ϕn(x)‖→ 0 (15)
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asn→ ∞ by Lemma 17. Thus, combining (11), (12), (13), (14) and (15) leads to

sup
{∥∥Sng−Tng

∥∥
∞ : ‖g‖W ≤ 1

}
→ 0 a.s. asn→ ∞. (16)

For the third term in (9), using the inequality
∣∣r
(
ϕn(x),Xi

)
− r
(
x,Xi

)∣∣≤ ‖Dxr‖∞ sup
x∈L(t)

‖ϕn(x)−x‖

we deduce that
∣∣Tng(x)−Ung(x)

∣∣≤ 1

µ
(
L(t)

)‖g‖∞‖Dxr‖∞ sup
x∈L(t)

‖ϕn(x)−x‖.

and so
sup
{∥∥Tng−Ung

∥∥
∞ : ‖g‖W ≤ 1

}
→ 0 a.s. asn→ ∞, (17)

by Lemma 17.
At last, for the fourth term in (9), we conclude by Lemma 13 that

sup
{∥∥Ung−Rg

∥∥
∞ : ‖g‖W ≤ 1

}
→ 0 a.s. asn→ ∞.

Finally, reporting (10), (16) and (17) in (9) yields the desired result.

3.2 Normalized Operators

Theorem 4 states that̂Qn,h converges in operator norm to the limit operatorQh : W
(
L(t)

)
→

W
(
L(t)

)
defined by

Qhg(x) =
∫
L(t)

qh(x,y)g(y)µ
t(dy), (18)

whereµt denotes the conditional distribution ofX given the event
[
X ∈ L(t)

]
, and where

qh(x,y) =
kh(y−x)

Kh(x)
, with Kh(x) =

∫
L(t)

kh(y−x)µt(dy). (19)

Theorem 4 (Operator Norm Convergence) Suppose that Assumptions 1 and 2 hold. We have
∥∥Q̂n,h−Qh

∥∥
W → 0 almost surely as n→ ∞.

Proof We will prove that, asn→ ∞, almost surely,

sup

{∥∥∥Q̂n,hg−Qhg
∥∥∥

∞
: ‖g‖W ≤ 1

}
→ 0 (20)

and

sup

{∥∥∥Dx
[
Q̂n,hg

]
−Dx

[
Qhg

]∥∥∥
∞

: ‖g‖W ≤ 1

}
→ 0 (21)

To this aim, we introduce the operatorQ̃n,h acting onW(L(t)) as

Q̃n,hg(x) =
∫
Ln(t)

qh(ϕn(x),y)g
(
ϕ−1

n (y)
)
P

t
n(dy).
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Proof of (20) For all g∈W
(
L(t)

)
, we have

∥∥Q̂n,hg−Qhg
∥∥

∞ ≤
∥∥Q̂n,hg− Q̃n,hg

∥∥
∞ +

∥∥Q̃n,hg−Qhg
∥∥

∞. (22)

First, by Lemma 14, the functionr = qh satisfies the condition in Proposition 3, so that

sup
{
‖Q̃n,hg−Qhg‖∞ : ‖g‖W ≤ 1

}
→ 0 (23)

with probability one asn→ ∞.
Next, since‖qh‖∞ < ∞ by Lemma 14, there exists a finite constantCh such that,

‖Q̃n,hg‖∞ ≤Ch for all n and allg with ‖g‖W ≤ 1. (24)

By definition ofqn,h, for all x,y in the level setL(t), we have

qn,h(x,y) =
Kh(x)

Kn,h(x)
qh(x,y).

So

∣∣∣Q̂n,hg(x)− Q̃n,hg(x)
∣∣∣=
∣∣∣∣∣

Kn
(
ϕn(x)

)

Kn,h
(
ϕn(x)

) −1

∣∣∣∣∣
∣∣∣Q̃n,hg(x)

∣∣∣

≤Ch sup
x∈L(t)

∣∣∣∣∣
Kn
(
ϕn(x)

)

Kn,h
(
ϕn(x)

) −1

∣∣∣∣∣ ,

whereCh is as in (24). Applying Lemma 16 yields

sup
{
‖Q̂n,hg− Q̃n,hg‖∞ : ‖g‖W ≤ 1

}
→ 0 (25)

with probability one asn→ ∞. Reporting (23) and (25) in (22) proves (20).

Proof of (21) We have
∥∥∥∥Dx

[
Q̂n,hg

]
−Dx

[
Qhg

]∥∥∥∥
∞
≤
∥∥∥∥Dx

[
Q̂n,hg

]
−Dx

[
Q̃hg

]∥∥∥∥
∞
+

∥∥∥∥Dx

[
Q̃n,hg

]
−Dx

[
Qhg

]∥∥∥∥
∞
. (26)

The second term in right han side of (26) is bounded by
∥∥∥∥Dx

[
Q̃n,hg

]
−Dx

[
Qhg

]∥∥∥∥
∞
≤
∥∥Dxϕn

∥∥
∞

∥∥Rng−Rg
∥∥

∞,

where

Rng(x) :=
∫
Ln(t)

(Dxqh)(ϕn(x),y)g
(
ϕ−1

n (y)
)
P

t
n(dy) and

Rg(x) :=
∫
L(t)

(Dxqh)(ϕn(x),y)g
(
ϕ−1

n (y)
)
µt(dy).
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By lemma 17,x 7→ Dxϕn(x) converges to the identity matrixId of Rd, uniformly in x overL(t). So
‖Dxϕn(x)‖ is bounded by some finite constantCϕ uniformly overn andx∈ L(t) and

∥∥∥∥Dx

[
Q̃n,hg

]
−Dx

[
Qhg

]∥∥∥∥
∞
≤Cϕ

∥∥Rng−Rg
∥∥

∞.

By Lemma 14, the mapr : (x,y) 7→Dxqh(x,y) satisfies the conditions in Proposition 3. Thus,‖Rng−
Rg‖∞ converges to 0 almost surely, uniformly overg in the unit ball ofW(L(t)), and we deduce that

sup

{∥∥∥∥Dx

[
Q̃n,hg

]
−Dx

[
Qhg

]∥∥∥∥
∞

: ‖g‖W ≤ 1

}
→ 0 a.s. asn→ ∞. (27)

For the first term in right hand side of (26), observe first that there exists a constantC′
h such that,

for all n and allg in the unit ball ofW
(
L(t)

)
,

‖Rn,hg‖∞ ≤C′
h, for all n and allg with ‖g‖W ≤ 1, (28)

by Lemma 14.
On the one hand, we have

Dx
[
qn,h(ϕn(x),y)

]
=

Kh
(
ϕn(x)

)

Kn,h
(
ϕn(x)

)Dxϕn(x)(Dxqh)
(
ϕn(x),y

)
+Dx

[
Kh
(
ϕn(x)

)

Kn,h
(
ϕn(x)

)
]

qh
(
ϕn(x),y

)
.

Hence,

Dx

[
Q̂n,hg(x)

]
=

Kh
(
ϕn(x)

)

Kn,h
(
ϕn(x)

)Dxϕn(x)Rng(x)+Dx

[
Kh
(
ϕn(x)

)

Kn,h
(
ϕn(x)

)
]

Q̃n,hg(x).

On the other hand, sinceDx
[
qh
(
ϕn(x),y

)]
= Dxϕn(x)(Dxqh)

(
ϕn(x),y

)
,

Dx

[
Q̃n,hg(x)

]
= Dxϕn(x)Rng(x).

Thus,

Dx

[
Q̂n,hg(x)

]
−Dx

[
Q̃hg(x)

]
=Dx

[
Kh
(
ϕn(x)

)

Kn,h
(
ϕn(x)

)
]

Q̃n,hg(x)+

(
Kh
(
ϕn(x)

)

Kn,h
(
ϕn(x)

) −1

)
Dxϕn(x)Rng(x).

Using the Inequalities (24) and (28), we obtain

∥∥∥Dx

[
Q̂n,hg

]
−Dx

[
Q̃hg

]∥∥∥
∞
≤Ch sup

x∈L(t)

∣∣∣∣∣Dx

[
Kh
(
ϕn(x)

)

Kn,h
(
ϕn(x)

)
]∣∣∣∣∣+C′

hCϕ sup
x∈L(t)

∣∣∣∣∣
Kh
(
ϕn(x)

)

Kn,h
(
ϕn(x)

) −1

∣∣∣∣∣ .

and by applying Lemma 16, we deduce that

sup

{∥∥∥∥Dx

[
Q̂n,hg

]
−Dx

[
Q̃hg

]∥∥∥∥
∞

: ‖g‖W ≤ 1

}
→ 0 a.s. asn→ ∞. (29)

Reporting (27) and (29) in (26) proves (21).
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4. Consistency of the Algorithm

The consistency of the algorithm relies on the operator norm convergence of Q̂n,h to the limit oper-
atorQh (Theorem 4), on the spectral properties ofQh stated below in Section 4.1, and on the results
collected in Appendix B on the perturbation theory of linear operators, Thestarting point is the fact
that, provided thath< dmin, the connected components of the level setL(t) are the recurrent classes
of the Markov chain whose transitions are defined byQh. Indeed, this process cannot jump from
one component to another component. HenceQh defines the desired clustering via its eigenspace
corresponding to the eigenvalue 1, since this latter is spanned by the characteristic functions of the
connected components ofL(t), as stated in Proposition 6 below.

In Section 4.2, the consistency of the clustering is obtained in Theorem 7 in thecase where the
scale parameterh is lower thandmin defined in (1), which is the minimum distance between any two
connected components ofL(t). Using the continuity ofQh in h, we then obtain the main consistency
in Theorem 10 of Section 4.3, whereh is allowed to be larger thandmin, up to a value depending
only on the underlying densityf .

4.1 Properties of the Limit Operator Qh When h< dmin

The transition kernelqh(x,dy) := qh(x,y)µt(dy) associated with the operatorQh defines a Markov
chain with state spaceL(t), which is not countable. Familiar notions such as irreducibility, aperi-
odicity, and positive recurrence, which are valid for a Markov chain ona countable state space, may
be extended to the non-countable case. The relevant definitions and materials on Markov chains
on a general state space are summarized in Appendix C. The properties ofthe Markov chain with
transition kernelqh(x,dy) are stated in Proposition 5 below.

Recall thatL(t) hasℓ connected componentsC1, . . . ,Cℓ and thatdmin, defined in (1), is the
minimal distance between the connected components ofL(t).

Proposition 5 Consider the Markov chain with state spaceL(t) and transition kernel qh(x,dy),
and assume that h< dmin.
1. The chain is Feller and topologically aperiodic.
2. When started at a point x in some connected component of the state space, the chain evolves
within this connected component only.
3. When the state space is reduced to some connected component ofL(t), the chain is open set
irreducible and positive Harris recurrent.
4. When the state space is reduced to some connected componentCk ofL(t), the Markov chain has a
unique invariant distributionνk(dy) and, for all x∈ Ck, the sequence of distributions

{
qn

h(x,dy)
}

n∈N
overCk converges in total variation toνk(dy).

Proof Denote by{ξn} the Markov chain with transition kernelqh(x,dy). For allx∈ L(t), the dis-
tribution qh(x,dy) = qh(x,y)µt(dy) is absolutely continuous with respect to the Lebesgue measure,
with densityy 7→ fh(x,y) defined by

fh(x,y) = qh(x,y)
f (y)∫

y′∈L(t) f (y′)dy′
1L(t)(y).

Since the similarity functionkh and the densityf are both continuous, the map(x,y) 7→ fh(x,y) is
continuous.
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Now, by induction onn, the distribution ofξn conditioned byξ0 = x, which isqn+1
h (x,dy) is also

absolutely continuous with respect to the Lebesgue measure and its densityy 7→ f n
h (x,y) satisfies

f n
h (x,y) =

∫
z∈L(t)

f n−1
h (x,z) fh(z,y)dz=

∫
z∈L(t)

fh(x,z) f n−1
h (z,y)dz, (30)

where the last equality follows from the Markov property. Moreover, one easily sees by induction
that the map(x,y) 7→ f n

h (x,y) is continuous.
1. Since the similarity functionkh is continuous, with compact supporthB, the map

x 7→ Qhg(x) =
∫
L(t)

qh(x,dy)g(y)

is continuous for every bounded, measurable functiong. Hence, the chain is Feller.
Now we have to prove that the chain is topologically aperiodic, that is, thatqn

h(x,x+ηB) > 0
for eachx ∈ L(t), for all n ≥ 1 andη > 0, whereqn

h(x, ·) is the distribution ofξn conditioned on
ξ0 = x. Since the distributionqn

h(x, ·) admits a continuous densityf n
h (x, ·), it is enough to prove that

f n
h (x,x) > 0. Sincekh is bounded from below on(h/2)B by Assumption 2, the densityfh(x,y) is

strictly positive for ally∈ x+hB/2. By induction overn, using (30),f n
h (x,x) > 0 and the chain is

topologically aperiodic.

2. Without loss of generality, since the numbering of the connected components is arbitrary, assume
thatx∈ C1. Let y be a point ofL(t) which does not belong toC1. Then‖y−x‖ ≥ dmin > h so that
qh(x,y) = 0. Whence,

Px(ξ1 ∈ C1) = qh(x,C1) =
∫
C1

qh(x,y)µ
t(dy) =

∫
L(t)

qh(x,y)µ
t(dy) = 1.

3. Assume that the state space is reduced toC1. In order to prove that the chain is open set irre-
ducible, it is enough to prove that, for eachx,y∈ C1 andη > 0, there exists some integerN such that
Px(ξN ∈ y+ηB) = qN

h (x,y+ηB) is positive. Observe thatqn
h(x,dy) is the distribution with density

qn
h(x,y) =

∫
x1,...,xn−1∈C1

qh(x,x1)qh(x1,x2) . . .qh(xn−1,y)dx1dx2dxn−1

and(x1, . . . ,xn−1) 7→ qh(x,x1)qh(x1,x2) . . .qh(xn−1,y) is continuous. Hence, it is enough to prove
that there exists some integerN and a finite sequencex1, . . .xN such that

qh(x,x1)qh(x1,x2) . . .qh(xN−1,y)> 0.

SinceC1 is connected, there exists a finite sequencex0, x1, . . .xN of points inC1 such thatx0 = x,
xN = y, and‖xi −xi+1‖ ≤ h/2 for eachi. Therefore

qh(x,x1)qh(x1,x2) . . .qh(xN−1,y)> 0

which proves that the chain is open set irreducible.
SinceC1 is compact, the chain is non-evanescent, and so it is Harris recurrent. Recall that

k(x) = k(−x) from Assumption 2. Thereforekh(y−x) = kh(x−y) which yields

Kh(x)qh(x,dy)µt(dx) = Kh(y)qh(y,dx)µt(dy).
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By integrating the previous relation with respect tox overC1, one may verify thatKh(x)µt(dx) is an
invariant measure. At last

∫
C1

Kh(x)µt(dx)< ∞, which proves that the chain is positive.

4. This ergodic property is a direct application of the last part of Appendix C.

Proposition 6 Assume that h< dmin. If g is continuous and Qhg = g, then g is constant on the
connected components ofL(t).

Proof The numbering of the connected components is arbitrary. Hence it is enough to prove that
g is constant overC1. For this, fixx in C1 and note thatg = Qhg implies g = Qn

hg for any n ≥ 1.
By Proposition 5, the chain is open set irreducible, topologically aperiodic,and positive Harris
recurrent onC1. Moreover,qn

h(x,dy) converges in total variation norm toν1(dy), whereν1 is the
unique invariant distribution when state space is reduced toC1. Specifically,

Qn
hg(x)−→

∫
C1

g(y)ν1(dy) asn→ ∞.

Hence, for everyx in C1,

g(x) =
∫
C1

g(y)ν1(dy),

and since the last integral does not depend onx, it follows thatg is a constant function onC1.

4.2 Spectral Convergence

Theorem 7 states that the representation of the extracted part of the data set into the feature space
R
ℓ (see the end of Section 2.2) tends to concentrate aroundℓ different centroids. Moreover, each of

these centroids corresponds to a cluster, that is, to a connected component ofL(t). As a trivial con-
sequence, any partitioning algorithm (e.g.,k-means) applied in the feature space will asymptotically
yield the desired clustering. In other words, the clustering algorithm is consistent.

More precisely, using the convergence in operator norm ofQ̂n,h towardsQh, together with the
results of functional analysis given in Appendix B, we obtain the following Theorem which de-
scribes the asymptotic behavior of the algorithm. Let us denote byJ(∞) the set of integersj such
thatXj is in the level setL(t). For all j ∈ J(∞), definek( j) as the integer such thatXj ∈ Ck( j).

Theorem 7 Suppose that Assumptions 1 and 2 hold, and that h is in(0;dmin).
1. The firstℓ eigenvaluesλn,1, λn,2,. . . ,λn,ℓ of Qn,h converge to 1 almost surely as n→ ∞, and there
existsη0 > 0 such that for all j> ℓ, λn, j belongs to{z : |z− 1| ≥ η0} for n large enough, with
probability one.
2. There exists a sequence{ξn}n of invertible linear transformations ofRℓ such that, for all j∈ J(∞),
ξnρn(Xj) converges almost surely to ek( j), where ek( j) is the vector ofRℓ whose components are all
0 except the k( j)th component equal to1.

Proof 1. The spectrum ofQh may be decomposed asσ(Qh) = σ1(Qh)∪σ2(Qh), whereσ1(Qh) =
{1} and whereσ2(Qh) = σ(Qh)\{1}. Since 1 is an isolated eigenvalue, there existsη0 in the open
interval (0;1) such thatσ(Qh)∩{z∈ C : |z−1| ≤ η0} is reduced to the singleton{1}. Moreover,
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1 is an eigenvalue ofQh of multiplicity ℓ, by Proposition 6. Hence by Theorem 18,W
(
L(t)

)

decomposes intoW
(
L(t)

)
= M1⊕M2 whereM1 = N(Qh−1) andM2 is mapped into itself byQh.

Split the spectrum of̂Qn,h asσ
(
Q̂n,h

)
= σ1

(
Q̂n,h

)
∪σ2

(
Q̂n,h

)
, where

σ1
(
Q̂n,h

)
= σ

(
Q̂n,h

)
∩
{

z∈ C : |z−1|< η0
}
.

By Theorem 18, this decomposition of the spectrum ofQ̂n,h yields a decomposition ofW
(
L(t)

)
as

W
(
L(t)

)
= Mn,1⊕Mn,2, whereMn,1 andMn,2 are stable subspaces underQ̂n,h and

Mn,1 :=
⊕

λ∈σ1(Q̂n,h)

N(Q̂n,h−λ).

By Proposition 1,σ(Q̂n,h) = σ(Qn,h)∪{0}. Statement 6 of Theorem 19 implies that, for alln large
enough, the total multiplicity of the eigenvalues inσ1(Q̂n,h) is dim(M1) = dim(N(Qh − 1)) = ℓ.
Hence, for allj > ℓ, λn, j belongs to{z : |z−1| ≥ η0}. Moreover, statement 4 of Theorem 19 proves
that the firstℓ eigenvalues converges to 1.
2. In addition to the convergence of the eigenvalues ofQn,h, the convergence of the eigenspaces also
holds. More precisely, letΠ be the projector onM1 = N(Qh−1) alongM2 andΠn the projector on
Mn,1 alongMn,2. Statements 2, 3, 5 and 6 of Theorem 19 leads to

‖Πn−Π‖W → 0 a.s. (31)

and the dimension ofMn,1 is equal toℓ for all n large enough.
Denote byEn,1 the subspace ofC j(n) spanned by the eigenvectors ofQn,h corresponding to the

eigenvaluesλn,1, . . .λn,ℓ. Since

Mn,1 =
⊕

λ∈σ1(Q̂n,h)

N(Q̂n,h−λ) and En,1 =
⊕

λ∈σ1(Qn,h)

N(Qn,h−λ),

by Proposition 1 the mapπnΦn induces an isomorphism betweenMn,1 and En,1. Moreover,Πn

induces a morphism̃Πn from M1 to Mn,1 which converges to the identity map ofM1 in W-norm by
(31). Hence, ifn is large enough,̃Πn is invertible and we have the following isomorphisms of vector
spaces:

Π̃n : M1
∼=−→ Mn,1 and πnΦn : Mn,1

∼=−→ En,1. (32)

By Proposition 6, the functionsgk := 1Ck, k= 1,2. . . , ℓ, form a basis ofM1 = N(Qh−1). Using
the isomorphisms of (32), we may define for allk∈ {1, . . . ℓ},

gn,k := Π̃ngk, and ϑn,k := πnΦngn,k = πnΦnΠ̃ngk.

Then the collections{gn,k}k=1,...,ℓ and{ϑn,k}k=1,...,ℓ are a basis ofMn,1 andEn,1 respectively. More-
over, for allk∈ {1, . . . , ℓ}, gn,k converges to1Ck in W-norm by (31). And, asn→ ∞, if j ∈ J(∞),

ϑn,k, j = Π̃n(1Ck)◦ϕ−1
n (Xj)→ 1Ck(Xj) =

{
1 if k= k( j),

0 otherwise.
(33)
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The eigenvectorsVn,1, . . . ,Vn,ℓ chosen in the algorithm form another basis ofEn,1. Hence, there
exists a matrixξn of dimensionℓ× ℓ such that

ϑn,k =
ℓ

∑
i=1

ξn,k,i Vn,i .

Hence thej th component ofϑn,k, for all j ∈ J(n), may be expressed as

ϑn,k, j =
ℓ

∑
i=1

ξn,k,i Vn,i, j .

Sinceρn(Xj) is the vector ofRℓ with components{Vn,i, j}i=1,...,ℓ, the vectorϑn,•, j = {ϑn,k, j}k of Rℓ

is related toρn(Xj) by the linear transformationξn, that is,

ϑn,•, j = ξn ρn(Xj).

The convergence ofϑn,•, j to ek( j) then follows from (33) and Theorem 7 is proved.

Remark 8 The last step of the spectral clustering algorithm consists in partitioning the transformed
data in the feature space, which can be performed by a standard clusteringalgorithm, like the k-
means algorithm or a hierarchical clustering. Theorem 7 states that thereexists a choice for a basis
of ℓ eigenvectors such that the transformed data concentrates on theℓ canonical basis vectors ek of
R
ℓ. Consequently, upon choosing a suitable collection Vn,1, . . . ,Vn,ℓ of eigenvectors, for anyε > 0,

with probability one, for n large enough, the transformed dataρn(Xj)’s belong to the union of balls
centered at e1, . . . ,eℓ and of radiusε. Combining this result with known asymptotic properties of the
aforementioned clustering algorithms leads to the desired partition.

For instance, a hierarchical agglomerative method with single linkage allowsto separate groups
provided that the minimal distance between the groups is larger than the maximal diameter of the
groups. In the preceding display, by choosingε such that2ε <

√
2, with probability one for n large

enough the points belong toℓ balls of diameter2ε which are all at a distance strictly larger than2ε.
Consequently, cutting the dendrogram tree of the single linkage hierarchical clustering at a height
2ε will correctly separate the groups, and the algorithm is consistent.

Similarly, for the k-means algorithm, we may note that, upon choosing a suitable basis of eigen-
vectors, the empirical measure associated with the transformed data converges to a discrete mea-
sure supported by the canonical vectors e1, . . . ,eℓ. Consistency of the grouping then follows from
the well-known properties of the vector quantization method; see Pollard (1981).

The existence of an appropriate choice of eigenvectors is guaranteed by Theorem 7. How to
choose such a collection of eigenvectors in practice is left for future research. In this direction,
we may note that the two clustering methods considered above (i.e., k-means and hierarchical)
are invariant by isometries. So the main question concerns the choice of the normalization of an
arbitrary collection of eigenvectors.

Remark 9 Note that if one is only interested in the consistency property, then this resultcould be
obtained through another route. Indeed, it is shown in Biau et al. (2007)that the neighborhood
graph with connectivity radius h has asymptotically the same number of connected components as
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the level set. Hence, splitting the graph into its connected components leads tothe desired clustering
as well. But Theorem 7, by giving the asymptotic representation of the data when embedded in the
feature spaceRℓ, provides additional insight into spectral clustering algorithms. In particular,
Theorem 7 provides a rationale for the heuristic of Zelnik-Manor and Perona (2004) for automatic
selection of the number of groups. Their idea is to quantify the amount of concentration of the
points embedded in the feature space, and to select the number of groupsleading to the maximal
concentration. Their method compared favorably with the eigengap heuristic considered in von
Luxburg (2007).

4.3 Further Spectral Convergence

Naturally, the selection of the number of groups is also linked with the choice ofthe parameter
h. In this direction, let us emphasize that the operatorsQ̂n,h andQh depend continuously on the
scale parameterh. Thus, the spectral properties of both operators will be close to the onesstated in
Theorem 7 ifh is in a neighborhood of the interval(0;dmin). This follows from the continuity of
an isolated set of eigenvalues, as stated in Appendix B. In particular, the sum of the eigenspaces of
Qh associated with the eigenvalues close to 1 is spanned by functions that are close to (inW(L(t))-
norm) the characteristic functions of the connected components ofL(t). Hence, the representation
of the data set in the feature spaceR

ℓ still concentrates on some neighborhoods ofek, 1≤ k≤ ℓ and
a simple clustering algorithm such as thek-means algorithm will still lead to the desired partition.
This is made precise in the following Theorem.

Theorem 10 Suppose that assumptions 1 and 2 hold. There exists hmax> dmin which depends only
on the density f , such that, for any h∈ (0;hmax), the event “for all n large enough, the representation
of the extracted data set in the feature space, namely{ρn(Xj)} j∈J(n), concentrates inℓ cubes ofRℓ

that do not overlap” has probability one. Moreover, on this event of probability one, theℓ cubes
are in one-to-one correspondence with theℓ connected component ofL(t). Hence, for all n large
enough, eachρn(Xj) with j ∈ J(∞) is in the cube corresponding to the k( j)th cluster for all n large
enough.

This result contrasts with the graph techniques used to recover the connected components, as in,
for example, Biau et al. (2007), where an unweighted graph is defined by connecting two observa-
tions if and only if their distance is smaller thanh. The partition is then obtained by the connected
components of the graph. However, whenh is taken slightly larger than the critical valuedmin, at
least two connected components cannot be separated using the graph partitioning algorithm.
Proof Let us begin with the following consequence of Proposition 6. For allh≤ dmin theℓ largest
eigenvalues ofQh are all equal to 1 and the corresponding eigenspace is spanned by the indicator
functions of the connected components of thet-level set. Moreover, 1 is an isolated eigenvalue of
Qdmin, that is, there existsη0 in the interval(0;1) such thatσ(Qdmin)∩{z∈ C : |z−1| < η0} is the
singleton{1}.

We choose an arbitrary constantC0 in (0;1/2). Sinceh 7→ Qh is continuous for the topology of
the operator norm, Theorem 19 implies that there exists a neighborhood(hmin;hmax) of dmin such
that, for allh in (hmin;hmax),
(i) Qh has exactlyℓ eigenvalues in{z∈ C : |z−1|< η0};
(ii) the sum of the corresponding eigenspaces ofQh is spanned byℓ functions, sayg1, . . . ,gℓ, at
distance (in‖ · ‖W-norm) less thanC0/2 from the indicator functions of the connected components
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of L(t) :
‖gk−1Ck‖∞ ≤ ‖gk−1Ck‖W <C0/2 for k= 1, . . . , ℓ. (34)

Now, fix h in (dmin;hmax). We follow the arguments leading to Theorem 7. The convergence in
(33) becomes

lim
n→∞

ϑn,k, j = gk(Xj) almost surely.

Hence, there existsn0 such that, for alln ≥ n0, j ∈ J(n) and k ∈ {1, . . . , ℓ}, we have|ϑn,k, j −
gk(Xj)| < C0/2. With the triangular inequality and (34), we obtain|ϑn,k, j − 1Ck(Xj)| < C0, that is,
the representation of the extracted data set in the feature space concentrates in cubes with edge
length 2C0, centered atek, k = 1, . . . , ℓ, up to a linear transformation ofRℓ, for all n large enough.
Moreover, ifXj with j ∈ J(∞) lies in Ck( j), then its representation is in the cube centered atek( j).
Since those cubes have edge length 2C0 < 1, they do not overlap. Hence, a classical method such as
the k-means algorithm will asymptotically partition the extracted data set as desired.

4.4 Generalizations and Open Problems

Our results allow to relate the limit partition of a spectral clustering algorithm with theconnected
components of either the support of the distribution (caset = 0) or of an upper level set of the
density (caset > 0). This holds for a fixed similarity function with compact support. Interestingly,
the scale parameterh of the similarity function may be larger than the minimal distance between two
connected components, up to a threshold valuehmax above which we have no theoretical guarantee
that the connected components will be recovered.

Several important questions, though, remain largely open. Among these, interpreting the limit
partition of the classical spectral clustering algorithm with the underlying distribution when one
asks for more groups than the number of connected components of its support remains largely an
unsolved problem. Also in practice, a sequencehn decreasing to 0 with the number of observations is
frequently used for the scale parameter of the similarity function, and to the best of our knowledge,
no convergence results have been obtained yet. At last, it would be interesting to alleviate the
assumption of compact support on the similarity function. Indeed, a gaussian kernel is a popular
choice in practice. In this direction, one possibility would be to consider a sequence of functions
with compact support converging towards the gaussian kernel at an appropriate rate.

5. Auxiliary Results for the Operator Norm Convergence

In this section we give technical lemmas that were needed in the proof of ourmain results. We also
recall several facts from empirical process theory in Section 5.2.

5.1 Preliminaries

Let us start with the following simple lemma.

Lemma 11 Let {An}n≥0 be a decreasing sequence of Borel sets inR
d, with limit A∞ = ∩n≥0An. If

µ(A∞) = 0, then

PnAn =
1
n

n

∑
i=1

1{Xi ∈ An}→ 0 almost surely as n→ ∞,
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wherePn is the empirical measure associated with the random sample X1, . . . ,Xn.

Proof First, note that limnµ(An) = µ(A∞). Next, fix an integerk. For all n ≥ k, An ⊂ Ak and so
PnAn ≤ PnAk. But limnPnAk = µ(Ak) almost surely by the law of large numbers. Consequently
limsupnPnAn ≤ µ(Ak) almost surely. Lettingk→ ∞ yields

limsup
n

PnAn ≤ µ(A∞) = 0,

which concludes the proof sincePnAn ≥ 0.

5.2 Uniform Laws of Large Number and Glivenko-Cantelli Classes

In this paragraph, we prove that some classes of functions satisfy a uniform law of large numbers.
We shall use some facts on empirical processes that we briefly summarize below. For materials on
the subject, we refer the reader to Chapter 19 in van der Vaart (1998) and the book by van der Vaart
and Wellner (2000).

A collectionF of functions is Glivenko-Cantelli if it satisfies a uniform law of large numbers,
that is, if

sup
g∈F

∣∣∣∣∣
1
n

n

∑
i=1

g(Xi)−E[X]

∣∣∣∣∣→ 0 almost surely,

where(Xn)n is an i.i.d. sequence of random variables with the same distribution as the random
variableX. That a classF is Glivenko-Cantelli depends on its size. A simple way of measuring the
size ofF is in terms of bracketing numbers.

A bracket[ fl , fu] is the set of functionsg in F such thatfu ≤ g≤ fu, and anε-bracket in Lp is
a bracket[ fl , fu] such thatE[( fu(X)− fl (X))p]1/p < ε. Thebracketing number N[ ](ε,F ,Lp) is the
minimal number ofε-brackets of sizeε in theLp norm which are needed to coverF . A sufficient
condition for a classF to be Glivenko-Cantelli is thatN[ ](ε,F ,L1) is finite for all ε > 0 (Theorem
2.4.1, van der Vaart and Wellner, 2000, p. 122).

A bound on theL1-bracketing number of a classF may be obtained from a bound on its metric
entropy in the uniform norm, if appropriate. Anε-covering ofF in the supremum norm is a col-
lection ofN balls of radiusε and centered at functionsf1, . . . , fN in F whose union coversF . For
ease of notation, anε-covering ofF is denoted by the centers of the ballsf1 . . . , fN. The minimal
numberN (ε,F ,‖.‖∞) of balls of radiusε in the supremum norm that are needed to coverF is
called thecovering numberof F in the uniform norm. Theentropyof the class is the logarithm
of the covering number, andF is said to havefinite entropyif N (ε,F ,‖.‖∞) is finite for all ε. If
a classF may be covered by finitely many balls of radiusε in the supremum norm and centered
at f1, . . . , fN, then the brackets[ fi − ε; fi + ε] have size at most 2ε for theL1 norm and their union
coversF . This argument is used to conclude the proof of Lemma 13 below.

Lemma 12 The two collections of functions

F1 :=
{

y 7→ kh(y−x)1L(t)(y) : x∈ L(t − ε0)
}
,

F2 :=
{

y 7→ Dxkh(y−x)1L(t)(y) : x∈ L(t − ε0)
}
,

are Glivenko-Cantelli, where Dxkh denotes the differential of kh.
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Proof Denote bygx the functions inF1, for x ranging inL(t − ε0). We proceed by constructing a
covering ofF1 by finitely manyL1-brackets of an arbitrary size, as in, for example, Example 19.8
in van der Vaart (1998). Denote byQ a probability measure onL(t). Let δ > 0. SinceL(t − ε0) is
compact, it can be covered by finitely many balls of radiusδ, that is, there exists an integerN and
pointsx1, . . . ,xN in L(t − ε0) such thatL(t − ε0) ⊂

⋃N
i=1B(xi ,δ). Define the functionsgl

i,δ andgu
i,δ

respectively by
gl

i,δ(y) = inf
x∈B(xi ,δ)

gx(y) and gu
i,δ(y) = sup

x∈B(xi ,δ)
gx(y).

Then the union of brackets[gl
i,δ,g

u
i,δ], for i = 1, . . . ,N, coversF1. Observe that|gx(y)| ≤ ‖kh‖∞ for

all x∈ L(t − ε0) and ally∈ L(t) sincekh is uniformly bounded, and that for any fixedy∈ L(t), the
mapx 7→ gx(y) is continuous sincek is of classC 2 onR

d under Assumption 2. Therefore the func-
tion gu

i,δ −gl
i,δ converges pointwise to 0 and‖gu

i,δ −gl
i,δ‖L1(Q) goes to 0 asδ → 0 by the Lebesgue

dominated convergence theorem. Consequently, for anyε > 0, one may choose a finite covering
of L(t − ε0) by N balls of radiusδ > 0 such that maxi=1,...,N ‖gu

i,δ −gl
i,δ‖L1(Q) ≤ ε. Hence, for all

ε > 0 theL1-bracketing number ofF1 is finite, soF1 is Glivenko-Cantelli. Sincekh is continuously
differentiable, the same arguments apply to each component ofDxkh, and soF2 is also a Glivenko-
Cantelli class.

Lemma 13 Let r : L(t)×R
d be a continuously differentiable function such that

(i) there exists a compactK ⊂ R
d such that r(x,y) = 0 for all (x,y) ∈ L(t)×K c;

(ii) r is uniformly bounded onL(t)×R
d, that is,‖r‖∞ < ∞.

Then the collection of functions

F3 :=
{

y 7→ r(x,y)g(y)1L(t)(y) : x∈ L(t), ‖g‖W(L(t)) ≤ 1
}

is Glivenko-Cantelli.

Proof SetR = {y 7→ r(x,y) : x∈ L(t)}. Sincer is continuous on the compact setL(t)×K , it is
uniformly continuous. So for anyε > 0, there existsδ > 0 such that|r(x,y)− r(x′,y′)| ≤ ε whenever
the points(x,y) and(x′,y′) in L(t)×K are at a distance no more thanδ. SinceL(t) is compact, it
may be covered by finitely many balls of radiusδ centered atN pointsx1, . . . ,xN of L(t). Denote by
gi the function inR defined bygi(y) = r(xi ,y), and letRi = {y 7→ r(x,y) : x∈ L(t) , ‖x−xi‖ ≤ δ}.
Then the union of theRi ’s coverR , and for anyg in Ri , ‖g−gi‖∞ ≤ ε. This shows thatR has finite
entropy in the supremum norm, that is, thatN (ε,R ,‖.‖∞)< ∞.

Second, consider the unit ballG in W(L(t)), that is,G = {g : L(t) → C : ‖g‖W(L(t)) ≤ 1}.
Denote byX the convex hull ofL(t), and consider the collection of functionsG̃ = {g̃ : X → C :
‖g̃‖W(X ) ≤ 1}. Observe that̃G is a subset of the Holder spaceC0,1(X ). It is proved in Theorem
2.7.1, p. 155 in the book by van der Vaart and Wellner (2000) that ifX is a convex bounded subset
of Rd, thenC0,1(X ) has finite entropy in the uniform norm (this theorem was established in van der
Vaart (1994) using results of Kolmogorov and Tikhomirov (1961). Consequently, for anyε > 0,
there existN functions g̃1, . . . , g̃n in G̃ such that the union of the sets{g̃ ∈ G̃ : ‖g̃− g̃i‖∞ ≤ ε}
coversG̃ . By considering the restrictionsgi of each ˜gi to L , it follows that the union of the sets
{g∈ G : ‖g−gi‖∞ ≤ ε} coversG . SoN (ε,G ,‖.‖∞)< ∞ for anyε > 0.
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Now fix ε > 0. Let r1, . . . , rM ∈ R be anε-covering ofR in the supremum norm, and let
g1, . . . ,gN ∈ G be anε-covering ofG in the supremum norm, for some integersM and N. For
any function f in F3 of the form f (y) = r(x,y)g(y)1L(t) for somex ∈ L(t) andg∈ W(L(t)) with
‖g‖W(L(t)) ≤ 1, there exists 1≤ i ≤M and 1≤ j ≤N such that‖r(x, .)− r i‖∞ ≤ ε and‖g−g j‖∞ ≤ ε.
Then

sup
y∈Rd

| f (y)− r i(y)g j(y)1L(t)(y)| = sup
y∈L(t)

|r(x,y)g(y)− r i(y)g j(y)|

= sup
y∈L(t)

∣∣(r(x,y)− r i(y))g(y)+ r i(y)(g(y)−g j(y))
∣∣

≤ sup
y∈L(t)

|r(x,y)− r i(y)|‖g‖∞ +‖r i‖∞ sup
y∈L(t)

∣∣g(y)−g j(y)
∣∣

≤ ε+‖r‖∞ε,

since‖r i‖∞ = 1 for all i = 1, . . . ,M and since‖g‖∞ ≤ ε. So the collection of functionsfi j : y 7→
r i(y)g j(y)1L(t)(y) form a finite covering ofF3 of sizeM ×N by balls of radius(1+ ‖r‖∞)ε in the
supremum norm, andN (ε,F3,‖.‖∞)< ∞ for all ε > 0.

To conclude the proof, observe that iff1, . . . , fN ∈ F3 is anε-covering ofF3 in the supremum
norm, then the brackets[ fi − ε; fi + ε] have size at most 2ε in theL1 norm, and their union covers
F3. So for allε > 0 theL1-bracketing number ofF3 is finite andF3 is Glivenko-Cantelli.

5.3 Bounds on Kernels

We recall that the limit operatorQh is given by (18). The following lemma gives useful bounds on
Kh andqh, both defined in (19).

Lemma 14 1. The function Kh is uniformly bounded from below by some positive number on
L(t − ε0), that is,inf{Kh(x) : x∈ L(t − ε0)}> 0;
2. The kernel qh is uniformly bounded, that is,‖qh‖∞ < ∞;
3. The differential of qh with respect to x is uniformly bounded onL(t−ε0)×R

d, that is,sup
{
‖Dxqh(x,y)‖ :

(x,y) ∈ L(t − ε0)×R
d
}
< ∞;

4. The Hessian of qh with respect to x is uniformly bounded onL(t−ε0)×R
d, that is,sup

{
‖D2

xqh(x,y)‖ :
(x,y) ∈ L(t − ε0)×R

d
}
< ∞.

Proof First observe that the statements 2, 3 and 4 are immediate consequences of statement 1
together with the fact that the functionkh is of classC 2 with compact support, which implies that
kh(y−x), Dxkh(y−x), andD2

xkh(y−x) are uniformly bounded.
To prove statement 1, note thatKh is continuous and thatKh(x)> 0 for all x∈ L(t). Set

α(ε0) = inf
{
‖Dx f (x)‖; x∈ L t

t−ε0

}
.

Let (x,y) ∈ L t
t−ε0

×∂L(t). Then

ε0 ≥ f (y)− f (x)≥ α(ε0)‖y−x‖.

Thus,‖y−x‖ ≤ ε0/α(ε0) and so

dist
(
x,L(t)

)
≤ ε0

α(ε0)
, for all x∈ L t

t−ε0
.

372



SPECTRAL CLUSTERING ONLEVEL SETS

Recall from (4) thath/2> ε0/α(ε0). Consequently, for allx∈ L(t − ε0), the set(x+hB/2)∩L(t)
contains a non-empty, open setU(x). Moreoverkh is bounded from below by some positive number
on hB/2 by Assumption 2. HenceKh(x) > 0 for all x in L(t − ε0) and point 1 follows from the
continuity ofKh and the compactness ofL(t − ε0).

In order to prove the convergence ofQ̂n,h to Qh, we also need to study the uniform convergence
of Kn,h, given in (2). Lemma 15 controls the difference betweenKn,h andKh, while Lemma 16
controls the ratio ofKh overKn,h.

Lemma 15 As n→ ∞, almost surely,

1. sup
x∈L(t−ε0)

∣∣∣Kn,h(x)−Kh(x)
∣∣∣→ 0 and

2. sup
x∈L(t−ε0)

∣∣∣DxKn,h(x)−DxKh(x)
∣∣∣→ 0.

Proof Let

K†
n,h(x) :=

1
nµ(L(t))

n

∑
i=1

kh(Xi −x)1Ln(t)(Xi), K††
n,h(x) :=

1
nµ(L(t))

n

∑
i=1

kh(Xi −x)1L(t)(Xi).

Let us start with the inequality
∣∣∣Kn,h(x)−Kh(x)

∣∣∣≤
∣∣∣Kn,h(x)−K†

n,h(x)
∣∣∣+
∣∣∣K†

n,h(x)−Kh(x)
∣∣∣, (35)

for all x∈ L(t − ε0). Using the inequality

∣∣∣Kn,h(x)−K†
n,h(x)

∣∣∣≤
∣∣∣∣

n
j(n)

− 1
µ(L(t))

∣∣∣∣ ‖kh‖∞

we conclude that the first term in (35) tends to 0 uniformly inx overL(t − ε0) with probability one
asn→ ∞, since j(n)/n→ µ

(
L(t)

)
almost surely, and sincekh is bounded onRd.

Next, for allx∈ L(t − ε0), we have
∣∣∣K†

n,h(x)−Kh(x)
∣∣∣≤
∣∣∣K†

n,h(x)−K††
n,h(x)

∣∣∣+
∣∣∣K††

n,h(x)−Kh(x)
∣∣∣. (36)

The first term in (36) is bounded by

∣∣∣K†
n,h(x)−K††

n,h(x)
∣∣∣≤ ‖kh‖∞

µ
(
L(t)

) 1
n

∣∣∣∣∣
n

∑
i=1

{
1Ln(t)(Xi)−1L(t)(Xi)

}∣∣∣∣∣

=
‖kh‖∞

µ
(
L(t)

) 1
n

n

∑
i=1

1Ln(t)∆L(t)(Xi),

whereLn(t)∆L(t) denotes the symmetric difference betweenLn(t) andL(t). Recall that, on the
eventΩn, L(t − εn)⊂ Ln(t)⊂ L(t − εn). ThereforeLn(t)∆L(t)⊂ L t+εn

t−εn
on Ωn, and so

0≤ 1
n

∣∣∣∣∣
n

∑
i=1

{
1Ln(t)(Xi)−1L(t)(Xi)

}∣∣∣∣∣1Ωn ≤
1
n

n

∑
i=1

1An(Xi),
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whereAn = L t+εn
t−εn

. Hence by Lemma 11, and since1Ωn → 1 almost surely asn→ ∞, the first term
in (36) converges to 0 with probability one asn→ ∞.

Next, since the collection
{

y 7→ kh(y− x)1L(t)(y) : x ∈ L(t − ε0)
}

is Glivenko-Cantelli by
Lemma 12, we conclude that

sup
x∈L(t−ε0)

∣∣∣K††
n,h(x)−Kh(x)

∣∣∣→ 0,

with probability one asn→ ∞. This concludes the proof of the first statement.
The second statement may be proved by developing similar arguments, withkh replaced by

Dxkh, and by noting that the collection of functions
{

y 7→ Dxkh(y− x)1L(t)(y) : x ∈ L(t − ε0)
}

is
also Glivenko-Cantelli by Lemma 12.

Lemma 16 As n→ ∞, almost surely,

sup
x∈L(t)

∣∣∣∣
Kh
(
ϕn(x)

)

Kn,h
(
ϕn(x)

) −1

∣∣∣∣→ 0, and sup
x∈L(t)

∥∥∥∥Dx

[
Kh
(
ϕn(x)

)

Kn,h
(
ϕn(x)

)
]∥∥∥∥→ 0.

Proof First of all,Kh is uniformly continuous onL(t−ε0) sinceKh is continuous and sinceL(t−ε0)
is compact. Moreover,ϕn converges uniformly to the identity map ofL(t) by Lemma 17. Hence

sup
x∈L(t)

∣∣Kh
(
ϕn(x)

)
−Kh(x)

∣∣→ 0 asn→ ∞,

and sinceKn,h converges uniformly toKh with probability one asn→ ∞ by Lemma 15, this proves
the first convergence result.

We have

Dx

[
Kh
(
ϕn(x)

)

Kn,h
(
ϕn(x)

)
]
=
[
Kn,h

(
ϕn(x)

)]−2
Dxϕn(x)

[
Kn,h

(
ϕn(x)

)
DxKh

(
ϕn(x)

)
−Kh

(
ϕn(x)

)
DxKn,h

(
ϕn(x)

)]
.

SinceDxϕn(x) converges to the identity matrixId uniformly overx∈L(t) by Lemma 17,‖Dxϕn(x)‖
is bounded uniformly overn andx∈ L(t) by some positive constantCϕ. Furthermore the mapx 7→
Kn,h(x) is bounded from below overL(t) by some positive constantkmin independent ofx because
i) inf x∈L(t−ε0)Kh(x) > 0 by Lemma 14, and ii) supx∈L(t−ε0)

∣∣Kn,h(x)−Kh(x)
∣∣→ 0 by Lemma 15.

Hence ∣∣∣∣∣Dx

[
Kh
(
ϕn(x)

)

Kn,h
(
ϕn(x)

)
]∣∣∣∣∣≤

Cϕ

k2
min

∣∣∣Kn,h(y)DxKh(y)−Kh(y)DxKn,h(y)
∣∣∣,

where we have sety= ϕn(x) which belongs toL(t − εn)⊂ L(t − ε0). At last, Lemma 15 gives

sup
y∈L(t−ε0)

∣∣∣Kn,h(y)DxKh(y)−Kh(y)DxKn,h(y)
∣∣∣→ 0 almost surely,

asn→ ∞ which proves the second convergence result.
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Appendix A. Geometry of Level Sets

The proof of the following result is adapted from Theorem 3.1 in (Milnor, 1963, p. 12) and Theo-
rem 5.2.1 in (Jost, 1995, p. 176)

Lemma 17 Let f : Rd →R be a function of classC 2. Let t∈R and suppose that there existsε0 > 0
such that f−1

(
[t − ε0; t + ε0]

)
is non empty, compact and contains no critical point of f . Let{εn}n

be a sequence of positive numbers such thatεn < ε0 for all n, andεn → 0 as n→ ∞. Then there
exists a sequence of diffeomorphismsϕn : L(t)→ L(t − εn) carryingL(t) toL(t − εn) such that:
1. sup

x∈L(t)
‖ϕn(x)−x‖→ 0 and

2. sup
x∈L(t)

‖Dxϕn(x)− Id‖→ 0,

as n→ ∞, where Dxϕn denotes the differential ofϕn and where Id is the identity matrix onRd.

Proof Recall first that a one-parameter group of diffeomorphisms{ϕu}u∈R of Rd gives rise to a
vector fieldV defined by

Vxg= lim
u→0

g
(
ϕu(x)

)
−g(x)

u
, x∈ R

d,

for all smooth functiong : Rd → R. Conversely, a smooth vector field which vanishes outside of a
compact set generates a unique one-parameter group of diffeomorphisms ofRd; see Lemma 2.4 in
(Milnor, 1963, p. 10) and Theorem 1.6.2 in (Jost, 1995, p. 42)

Denote the set{x∈ R
d : a≤ f (x) ≤ b} by Lb

a , for a≤ b. Let η : Rd → R be the non-negative
differentiable function with compact support defined by

η(x) =





1/‖Dx f (x)‖2 if x∈ L t
t−ε0

,

(t + ε0− f (x))/‖Dx f (x)‖2 if x∈ L t+ε0
t ,

0 otherwise.

Then the vector fieldV defined byVx = η(x)Dx f (x) has compact supportL t+ε0
t−ε0

, so thatV generates
a one-parameter group of diffeomorphisms

ϕu : Rd → R
d, u∈ R.

We have
Du
[

f
(
ϕu(x)

)]
= 〈V,Dx f 〉ϕu(x) ≥ 0,

sinceη is non-negative. Furthermore,

〈V,Dx f 〉ϕu(x) = 1, if ϕu(x) ∈ L t
t−ε0
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Consequently the mapu 7→ f
(
ϕu(x)

)
has constant derivative 1 as long asϕu(x) lies inL t

t−ε0
. This

proves the existence of the diffeomorphismϕn := ϕ−εn which carriesL(t) toL(t − εn).
Note that the mapu∈R 7→ ϕu(x) is the integral curve ofV with initial conditionx. Without loss

of generality, suppose thatεn ≤ 1. For allx in L t+ε0
t−ε0

, we have

‖ϕn(x)−x‖ ≤
∫ 0

−εn

∥∥Du
(
ϕu(x)

)∥∥du≤ εn/β(εn)≤ εn/β(ε0)

where we have set
β(ε) := inf

{
‖Dx f (x)‖ : x∈ L t+ε

t−ε
}
> 0.

This proves the statement 1, sinceϕn(x)−x is identically 0 onL(t + ε0).
For the statement 2, observe thatϕu(x) satisfies the relation

ϕu(x)−x=
∫ u

0
Dv
(
ϕv(x)

)
dv=

∫ u

0
V
(
ϕv(x))

)
dv.

Differentiating with respect tox yields

Dxϕu(x)− Id =
∫ u

0
Dxϕv(x)◦DxV

(
ϕv(x)

)
dv.

Since f is of classC 2, the two terms inside the integral are uniformly bounded overL t+ε0
t−ε0

, so that
there exists a constantC> 0 such that

‖Dxϕn− I‖x ≤Cεn,

for all x in L t+ε0
t−ε0

. Since‖Dxϕn− I‖x is identically zero onL(t + ε0), this proves the statement 2.

Appendix B. Continuity of an Isolated Finite Set of Eigenvalues

In brief, the spectrumσ(T) of a bounded linear operatorT on a Banach space is upper semi-
continuous inT, but not lower semi-continuous; see Kato (1995), IV§3.1 and IV§3.2. However, an
isolated finite set of eigenvalues ofT is continuous inT, as stated in Theorem 19 below.

Let T be a bounded operator on theC-Banach spaceE with spectrumσ(T). Letσ1(T) be a finite
set of eigenvalues ofT. Setσ2(T) = σ(T)\σ1(T) and suppose thatσ1(T) is separated fromσ2(T)
by a rectifiable, simple, and closed curveΓ. Assume that a neighborhood ofσ1(T) is enclosed in
the interior ofΓ. Then we have the following theorem; see Kato (1995), III.§6.4 and III.§6.5.

Theorem 18 (Separation of the spectrum) The Banach space E decomposes into a pair of sup-
plementary subspaces as E= M1⊕M2 such that T maps Mj into M j ( j = 1,2) and the spectrum
of the operator induced by T on Mj is σ j(T) ( j = 1,2). If additionally the total multiplicity m of
σ1(T) is finite, thendim(M1) = m.

Moreover, the following theorem states that a finite system of eigenvalues of T, as well as the
decomposition ofE of Theorem 18, depends continuously ofT, see Kato (1995), IV.§3.5. Let
{Tn}n be a sequence of operators which converges toT in norm. Denote byσ1(Tn) the part of the
spectrum ofTn enclosed in the interior of the closed curveΓ, and byσ2(Tn) the remainder of the
spectrum ofTn.
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Theorem 19 (Continuous approximation of the spectral decomposition) There exists a finite in-
teger n0 such that the following holds true.
1. Bothσ1(Tn) andσ2(Tn) are nonempty for all n≥ n0 provided this is true for T .
2. For each n≥ 0, the Banach space E decomposes into two subspaces as E= Mn,1⊕Mn,2 in the
manner of Theorem 18, that is, Tn maps Mn, j into itself and the spectrum of Tn on Mn, j is σ j(Tn).
3. For all n≥ n0, Mn, j is isomorphic to Mj .
4. If σ1(T) is a singleton{λ}, then every sequence{λn}n with λn ∈ σ1(Tn) for all n ≥ n0 converges
to λ.
5. If Π is the projector on M1 along M2 andΠn the projector on Mn,1 along Mn,2, thenΠn converges
in norm toΠ.
6. If the total multiplicity m ofσ1(T) is finite, then, for all n≥ n0, the total multiplicity ofσ1(Tn) is
also m anddim(Mn,1) = m.

Appendix C. Background Materials on Markov Chains

For the reader not familiar with Markov chains on a general state space, we begin by summarizing
the relevant part of the theory.

Let {ξi}i≥0 be a Markov chain with state spaceS ⊂ R
d and transition kernelq(x,dy). We write

Px for the probability measure when the initial state isx andEx for the expectation with respect to
Px. The Markov chain is called(strongly) Fellerif the map

x∈ S 7→ Qg(x) :=
∫
S

q(x,dy)g(y) = Ex f (ξ1)

is continuous for every bounded, measurable functiongonS ; see (Meyn and Tweedie, 1993, p. 132).
This condition ensures that the chain behaves nicely with the topology of the state spaceS . The
notion of irreducibility expresses the idea that, from an arbitrary initial point,each subset of the
state space may be reached by the Markov chain with a positive probability. AFeller chain is said
open set irreducibleif, for every pointsx,y in S , and everyη > 0,

∑
n≥1

qn(x,y+ηB)> 0,

whereqn(x,dy) stands for then-step transition kernel; see (Meyn and Tweedie, 1993, p. 135). Even
if open set irreducible, a Markov chain may exhibit a periodic behavior, that is, there may exist a
partitionS = S0∪S1∪ . . .∪SN of the state space such that, for every initial statex∈ S0,

Px[ξ1 ∈ S1,ξ2 ∈ S2, . . . ,ξN ∈ SN,ξN+1 ∈ S0, . . .] = 1.

Such a behavior does not occur if the Feller chain istopologically aperiodic, that is, if for each
initial statex, eachη > 0, there existsn0 such thatqn(x,x+ηB) > 0 for everyn≥ n0; see (Meyn
and Tweedie, 1993, p. 479).

Next we come to ergodic properties of the Markov chain. A Borel setA of S is calledHarris
recurrent if the chain visitsA infinitely often with probability 1 when started at any pointx of A,
that is,

Px

(
∞

∑
i=0

1A(ξi) = ∞

)
= 1
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for all x ∈ A. The chain is then said to beHarris recurrent if every Borel setA with positive
Lebesgue measure is Harris recurrent; see (Meyn and Tweedie, 1993, p. 204). At least two types
of behavior, called evanescence and non-evanescence, may occur. The event[ξn → ∞] denotes the
fact that the sample path visits each compact set only finitely many often, and the Markov chain is
callednon-evanescentif Px(ξn → ∞) = 0 for each initial statex∈ S . Specifically, a Feller chain is
Harris recurrent if and only if it is non-evanescent; see (Meyn and Tweedie, 1993, p. 122), Theorem
9.2.2.

The ergodic properties exposed above describe the long time behavior ofthe chain. A measure
ν on the state space is saidinvariant if

ν(A) =
∫
S

q(x,A)ν(dx)

for every Borel setA in S . If the chain is Feller, open set irreducible, topologically aperiodic and
Harris recurrent, it admits a unique (up to constant multiples) invariant measure ν; see (Meyn and
Tweedie, 1993, p. 235), Theorem 10.0.1. In this case, eitherν(S) < ∞ and the chain is called
positive, or ν(S) = ∞ and the chain is callednull. The following important result provides one with
the limit of the distribution ofξn whenn→ ∞, whatever the initial state is. Assuming that the chain
is Feller, open set irreducible, topologically aperiodic and positive Harrisrecurrent, the sequence
of distribution{qn(x,dy)}n≥1 converges in total variation toν(dy), the unique invariant probability
distribution; see Theorem 13.3.1 of (Meyn and Tweedie, 1993, p. 326).That is to say, for everyx in
S ,

sup
g

{∣∣∣∣
∫
S

g(y)qn(x,dy)−
∫
S

g(y)ν(dy)

∣∣∣∣
}
→ 0 asn→ ∞,

where the supremum is taken over all continuous functionsg from S to R with ‖g‖∞ ≤ 1.
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