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Abstract

A nonparametric regression model proposed in [Pelletier and Frouin, Ap-
plied Optics, 2006] as a solution to the geophysical problem of ocean color
remote sensing is studied. The model, called ridge function field, com-
bines a regression estimate in the form of a superposition of ridge func-
tions, or equivalently a neural network, with the idea pertaining to varying-
coefficients models, where the parameters of a parametric family are allowed
to vary with other variables. Under mild assumptions on the underlying dis-
tribution of the data, the strong universal consistency of the least-squares
ridge function fields estimate is established.
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1 Introduction
The motivation for the present work comes from the geophysical problem of ocean
color remote sensing from space, which we shall describe first. In this problem,
the aim is to predict the value of an oceanic parameter Y (e.g., the surface phy-
toplankton pigment concentration) from a vector X of radiometric measurements
at several wavelengths acquired by a sensor onboard a satellite platform. This is
in fact an inverse problem where the measurements X depend on Y and other
parameters, such as the aerosol optical properties, through a given forward oper-
ator (governing the radiative transfer in the ocean-atmosphere system) contami-
nated by a random measurement noise. In particular, X depends on a vector T
of angular variables describing the relative positions of the Sun and the sensor
with respect to the target; as such, T is observed simultaneously with X . The
difficulty, though, is that the operator to be inverted, resulting from modeling of
scattering and absorption processes at the micro-physical scale, is rather complex.
To circumvent this issue, the approach taken up in Pelletier and Frouin (2004,
2006) and Frouin and Pelletier (2007) consists in i) sampling the forward oper-
ator according to some prior distribution, ii) selecting a reasonable noise model,
and iii) estimating the regression function m of Y on X and T from the data
(X1, T1, Y1), . . . , (Xn, Tn, Yn), where m is defined by

m(x, t) = EX=x,T=t

[
Y |X,T

]
.

In this display, the variable T is independent from the response Y but not from
the predictor X . As such, T acts as an effect modifier in the sense of Hastie and
Tibshirani (1993) in the context of varying coefficient models, i.e., the shape of
the relation explaining Y from X is affected by the values taken by T . Let us
recall that a varying-coefficient model is a linear model the parameters of which
are allowed to vary with other variables. Since the work of Hastie and Tibshirani
(1993), varying-coefficient models have been studied by several authors (see e.g.,
Fan and Zhang, 1999, 2000; Fan, Yao, and Cai, 2003, Wong, Ip, and Zhang, 2008,
and the references therein). By relaxing to some extent the parametric constraint,
these models have proved useful in various application contexts, and in particular
in a high-dimensional setting.

As pointed out by Hastie and Tibshirani (1993) as well as Fan and Zhang (1999),
the idea of allowing the parameters of a linear model to vary with other variables
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is not new, and is widely used in the literature. More generally, one may start with
an arbitrary parametric family in place of a linear model, and allow its parameters
to vary with other variables. This idea is developed in Pelletier and Frouin (2004,
2006) and Frouin and Pelletier (2007) where we considered models of the form

ζ∗n : (x, t) 7→ ζ∗n(x, t) := f
(
x; θn(t)

)
. (1.1)

In model (1.1), the function f(.; θn) belongs to a setRn of functions, about which
more will be said later, parameterized by a vector θn, which in (1.1) is allowed
to vary with t. Additionally, to obtain an implementable model, each coordinate
map of the application t 7→ θn(t) in (1.1) is taken to lie in a parametric set Tn
of functions of t. Now suppose that X and T are taking values in some subsets
X ⊆ Rd and S ⊆ Rp, respectively. Another way of formalizing this construction
is to view the model (1.1) as a function of x being “attached” to each point t in S,
i.e., in mathematical terms, as a map

ζn : S → Rn, (1.2)

such that the map ζ∗n in (1.1) is the representation of ζn over the product space
X × S , i.e., we let ζ∗n(x, t) = ζn(t)(x). Thus the representation (1.2) highlights
the fact that the variable T acts as an effect modifier.

In the experiments reported in Pelletier and Frouin (2004, 2006) and Frouin and
Pelletier (2007), the sequenceRn of functions in (1.2) is taken as the set spanned
by functions of the ridge form or, equivalently, neural networks, and the resulting
models (1.1)-(1.2) is called a ridge function field over S. The sets Rn form a
nested sequence of the form R1 ⊆ R2 ⊆ . . . . There exists a vast literature on re-
gression estimation with these ridge functions and neural networks. In particular,
it is known that the union of sets spanned by ridge functions is dense in L2(µ),
for any probability measure µ (see, Cybenko, 1989; Hornik, Stinchcombe, and
White, 1989; Barron, 1993; Lin and Pinkus, 1993; Burger and Neubaeur, 2001;
Maiorov, 1999), and that they yield consistent nonparametric regression proce-
dures (see e.g. Gyorfi, Kohler, Krzyzak, and Walk, 2002, Chapter 16). Similarly,
the sets Tn have been chosen to form an increasing sequence T1 ⊆ T2 ⊆ . . . of
sets of real-valued functions on S.

Density results for ridge function fields have been obtained in Pelletier (2004)
in the compact-open topology. In particular, under mild assumptions on the sets
(Rn)n and (Tn)n, the union of ridge function fields is dense. Thus under these con-
ditions, ridge function fields are suitable candidates for nonparametric regression,
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since the approximation error of the estimate will decrease to 0 as n increases.
The purpose of the present work is to establish the strong universal consistency of
the least-squares regression estimate in the form of (1.1)-(1.2).

The paper is organized as follows. Section 2 introduces ridge function fields and
presents our main result (Theorem 2.1), which states that ridge function fields
adjusted by least squares are strongly universally consistent, i.e., that for any dis-
tribution of (X,T, Y ) satisfying mild assumptions, the L2 error of the regression
estimate converges to 0 with probability 1 as the sample size tends to infinity.
Section 3 is devoted to the proof of Theorem 2.1.

2 Ridge function fields
Let (X,T, Y ) be a random object, where X , T , and Y take values in Rd, Rp, and
R, respectively. We shall assume that X , T , and Y are bounded, i.e., that there
exists positive constants CX , CT and CY such that

|X| ≤ CX , |T | ≤ CT , |Y | ≤ CY , with probability 1. (2.1)

Given n independent copies (X1, T1, Y1), . . . , (Xn, Tn, Yn) of (X,T, Y ), our aim
is to construct an estimate of the regression function m of Y on the pair (X,T ),
i.e.,

m(x, t) = E
[
Y |(X,T ) = (x, t)

]
.

Let us start with the definition of a ridge function. A ridge function on Rd is
a function of the form σ

(
〈a, x〉

)
where σ : R → R is a given function, where

a ∈ Rd, and where 〈., .〉 denotes the usual scalar product on Rd. Approximation by
ridge functions refers to approximation by linear combinations of ridge functions.
There exists several variants of approximation by ridge functions, according to
whether the function σ is fixed or not. In the following, we shall consider the
familyRn of functions on Rd defined by

Rn =
{
x 7→

Kn∑
j=1

cjσ
(
〈aj, x〉+ bj

)
+ c0 : aj ∈ Rd , bj ∈ R , c0, cj ∈ R ,

j = 1, . . . , Kn

}
,
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where Kn is an integer, and where σ : R → R is a fixed squashing function, i.e.,
σ is nondecreasing, and satisfies the following two conditions:

lim
u→−∞

σ(u) = 0 and lim
u→∞

σ(u) = 1.

Next, let Ψ1,Ψ2, . . . : Rp → R be bounded basis functions, the linear span of
which is dense in C

(
Rp
)

in the topology of uniform convergence on compact sets,
i.e., the set

∞⋃
k=1

{
t 7→

k∑
j=1

ajΨj(t) : a1, . . . , ak ∈ R
}

is dense in C
(
Rp
)
. Without loss of generality, we assume that |Ψi| ≤ 1 for all

i ≥ 1. Next, given an integer L ∈ N and a real number ρ > 0, we shall consider
the following families of functions on Rp:

T (L) =
{
t 7→

L∑
j=1

ajΨj(t) : a1, . . . , ak ∈ R
}
,

Tρ(L) =
{
t 7→

L∑
j=1

ajΨj(t) : a1, . . . , ak ∈ R ,
L∑
j=1

|aj| ≤ ρ
}
.

Then, given integers Lan, Lbn, and Lcn, and a positive number ρn, we define the
family Fn of ridge function fields by

Fn =
{

(x, t) 7→
Kn∑
j=1

cj(t)σ
(
〈aj(t), x〉+ bj(t)

)
+ c0(t) : aj ∈

(
T (Lan)

)d
,

bj ∈ T (Lbn) , c0, cj ∈ Tρn(Lcn) , j = 1, . . . , Kn

}
.

We shall also consider the subset F̃n of Fn where only the coefficients cj are
allowed to vary with the variable t, i.e., we define

F̃n =
{

(x, t) 7→
Kn∑
j=1

cj(t)σ
(
〈aj, x〉+ bj

)
+ c0(t) : aj, bj ∈ R, c0, cj ∈ Tρn(Lcn) ,

j = 1, . . . , Kn

}
.
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Both sets Fn and F̃n are dense in the topology of uniform convergence on com-
pact sets (Pelletier, 2004). Consequently, Fn and F̃n are also dense in L2 for any
distribution with bounded support and, as exposed in the Introduction, the approx-
imation error of the estimates will decrease to 0 as n→∞.

Let us first define the maps m†n and m̃†n as any minimizer of the empirical L2 risk
over Fn and F̃n, respectively, i.e., mn and m̃n are such that

1

n

n∑
i=1

(
m†n(Xi, Ti)− Yi

)2

= inf
f∈Fn

1

n

n∑
i=1

(
f(Xi, Ti)− Yi

)2

, (2.2)

1

n

n∑
i=1

(
m̃†n(Xi, Ti)− Yi

)2

= inf
f̃∈F̃n

1

n

n∑
i=1

(
f̃(Xi, Ti)− Yi

)2

. (2.3)

Then we define the estimates mn and m̃n as truncated versions of m†n and m̃†n
respectively, i.e.,

mn(x, t) = Tβnm
†
n(x, t), (2.4)

m̃n(x, t) = Tβnm̃
†
n(x, t), (2.5)

where (βn)n is a sequence of positive numbers such that βn →∞, and where Tβn
is the truncation operator defined by Tβnu = min{|u|, βn} sign(u).

We are now in a position to state our main result.

Theorem 2.1 Let mn and m̃n be the truncated least-squares estimates defined by
(2.2), (2.3), (2.4), and (2.5).

(i) If

Kn →∞, Lan →∞, Lbn →∞, Lcn →∞, βn →∞, ρn →∞,

as n→∞ in such a way that

Knβ
4
n(Lan + Lbn + Lcn) log(βnρnKn)

n
→ 0 and

β4
n

n1−δ → 0,

for some δ > 0 as n→∞, then

lim
n→∞

∫ (
mn(x, t)−m(x, t)

)2
µ(dx, dt) = 0 with probability 1,

for every distribution of (X,T, Y ) satisfying (2.1).
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(ii) If
Kn →∞, Lcn →∞, βn →∞, and ρn →∞,

as n→∞ in such a way that

Knβ
4
nL

c
n log(βnρnKn)

n
→ 0 and

β4
n

n1−δ → 0,

for some δ > 0 as n→∞, then

lim
n→∞

∫ (
m̃n(x, t)−m(x, t)

)2
µ(dx, dt) = 0 with probability 1,

for every distribution of (X,T, Y ) satisfying (2.1).

Theorem 2.1 states that nonparametric regression estimation with ridge function
fields is a consistent procedure as long as the underlying distribution satisfies (2.1).
Note first that the extension to a multivariate response Y is straightforward, and
second that the family F̃n is a subset of the family Fn. Consequently, Fn offers
more flexibility than F̃n but, as expected, at the expense of an increased com-
plexity of the fitting algorithm. More generally, one may consider replacing the
familyRn in the definition of a set of function fields by any other nested sequence
of models used in nonparametric regression. That said, regarding the ocean color
remote sensing problem, the choice of using ridge functions has been dictated not
only by their approximation properties, but more importantly by the speed of ex-
ecution of these models, which should be high for processing large data sets, as
provided by satellite imagery. Models belonging to Fn have been implemented
and evaluated in Pelletier and Frouin (2006) for the retrieval of the chlorophyll-a
concentration, i.e., a univariate response, while the family F̃n has been used in
Frouin and Pelletier (2007) for the retrieval of the spectral marine reflectance, a
multivariate output. In practice, the minimization of the empirical L2 risk in (2.2)
and (2.3) may be solved using a stochastic gradient descent algorithm (see Pel-
letier and Frouin, 2006 for details).

Let us also mention that assumption (2.1), which is reasonable from a physical
perspective, may be weakened at the price of a little extra work. As a matter
of fact, one may assume that the response Y is unbounded and use a truncation
argument, as in, e.g., Kohler and Krzyzak (2005), and Gyorfi, Kohler, Krzyzak,
and Walk (2002, Theorem 10.2). Next, if X and T are unbounded, it is immediate
to show that the union of the sets Fn is dense in L2(µ) for any distribution µ
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provided that the sets T (L) contain the constant and affine functions of t. On
the other hand, a little extra work would be needed to derive the density in L2

of the union of the F̃n’s. The study of the convergence rates is left for future
research. In this perspective, let us emphasize that the respective influences of the
variables X and T on the response Y are well separated in a ridge function field,
by construction, which may prove useful for adaptation over anisotropic classes
of regression functions (see e.g. Hofmann and Lepski, 2002).

3 Proofs

3.1 Technical Lemmas
We shall need the following technical Lemmas to derive an upper-bound on the
covering number of Fn. Let us start by introducing the notations and definitions
used hereafter.

First of all, let G be a set of real valued functions on Rd, and let x1, . . . , xn be n
fixed points in Rd. For any functions g1, g2 : Rd → R, set

dist1,n(g1, g2) = Pn
(
|g1 − g2|

)
,

where Pn is the discrete uniform measure on {x1, . . . , xn}. The ε-covering num-
ber of G with respect to dist1,n is called theL1 ε-covering number of G on {x1, . . . , xn}
and will be denoted by N1

(
ε,G, xn1

)
, i.e., N1

(
ε,G, xn1

)
is the smallest integer N

such that there exists functions g1, . . . , gn such that

min
1≤j≤N

1

n

n∑
i=1

|g(xi)− gj(xi)| ≤ ε,

for all g ∈ G.

Similarly to the above, the L1 ε-packing number of G on {x1, . . . , xn}, further
denoted byM1(ε,G, xn1 ), is the maximal integerN such that there exists functions
g1, . . . , gN in G such that

1

n

n∑
i=1

∣∣gj(xi)− gk(xi)∣∣ ≥ ε,
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for all 1 ≤ j < k ≤ N.

Finally, G+ will denote the set of all subgraphs of functions in G, i.e.,

G+ =
{

(x, u) ∈ Rd × R : u ≤ g(x) , g ∈ G
}
,

and the Vapnik-Chervonenkis dimension of G+ will be denoted by VG+ (Vapnik
and Chervonenkis, 1971).

The following results, extracted from Lemmas 16.3, 16.4, and 16.5 in Gyorfi,
Kohler, Krzyzak, and Walk (2002), will be needed in the following, and are given
to make the paper self-contained. Let F be a set of functions Rd → R. Given a
squashing function σ, define G = {σ ◦ f : f ∈ F}. Then

VG+ ≤ VF+ . (3.1)

Given two sets F and G of functions Rd → R, set F ⊕G = {f + g : f ∈ F , g ∈
G}, and let {x1, . . . , xn} be n points in Rd. Then

N1

(
ε+ δ,F ⊕ G, xn1

)
≤ N1

(
ε,F , xn1

)
N1

(
δ,G, xn1

)
. (3.2)

Given two sets F and G of functions Rd → R, uniformly bounded over Rd by
some constants CF and CG , respectively, set F �G = {fg : f ∈ F , g ∈ G}, and
let {x1, . . . , xn} be n points in Rd. Then

N1

(
ε+ δ,F � G, xn1

)
≤ N1

(
ε/CG,F , xn1

)
N1

(
δ/CF ,G, xn1

)
. (3.3)

At last, given a set G of functions Rd → [0;B] with VG+ ≥ 2, n points {x1, . . . , xn}
in Rd, and 0 < ε < B/4, we have (Gyorfi, Kohler, Krzyzak, and Walk (2002),
Theorem 9.4)

M1

(
ε,G, xn1

)
≤ 3

(
2eB

ε
log

3eB

ε

)VG+

. (3.4)

We may now state an upper-bound on the covering number of Fn.

Lemma 3.1 Let N1

(
ε,Fn, (X,T )n1

)
be the L1 ε-covering number of Fn on the

sample (X1, T1), . . . , (Xn, Tn). Then

N1

(
ε,Fn, (X,T )n1

)
≤ 3

(
108eρn(Kn + 1)

ε

)2(Lcn+1)+2Kn(Land+L
b
n+Lcn+2)

. (3.5)
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Proof. Consider the following sets of functions:

G1 =
{

(x, t) 7→ 〈a(t), x〉+ b(t) : a1, . . . , ad ∈ T (Lan) , b ∈ T (Lbn)
}
,

G2 =
{

(x, t) 7→ σ
(
〈a(t), x〉+ b(t)

)
: a1, . . . , ad ∈ T (Lan) , b ∈ T (Lbn)

}
,

G3 =
{

(x, t) 7→ c(t)σ
(
〈a(t), x〉+ b(t)

)
: a1, . . . , ad ∈ T (Lan) , b ∈ T (Lbn) ,

c ∈ Tρn(Lcn)
}
.

Since G1 is a vector space of dimension Land+ Lbn, we have

VG+
1
≤ Land+ Lbn + 1.

Next, (3.1) yields
VG+

2
≤ VG+

1
.

Consequently, since |σ(u)| ≤ 1 for all u ∈ R, and using (3.4), we obtain

N1

(
ε,G2, (X,T )n1

)
≤ M1

(
ε,G2, (X,T )n1

)
≤ 3

[
2e

ε
log

(
3e

ε

)]VG+
2

≤ 3

(
3e

ε

)2(Land+L
b
n+1)

. (3.6)

Now, using the inequality (3.3) leads to

N1

(
ε,G3, (X,T )n1

)
≤ N1

(ε
2
, Tρn(Lcn), (X,T )n1

)
N1

( ε

2ρn
,G2, (X,T )n1

)
.

But, using (3.4), we have

N1

(
ε, Tρn(Lcn), (X,T )n1

)
≤ M1

(
ε, Tρn(Lcn), (X,T )n1

)
≤ 3

[
2e(2ρn)

ε
log

(
3e(2ρn)

ε

)]VTρn (Lcn)+

≤ 3

(
6eρn
ε

)2(Lcn+1)

, (3.7)

since
VTρn (Lcn)+ ≤ VT (Lcn)+ ≤ Lcn + 1,
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and since T (Lcn) is a vector space of dimension Lcn. Then from (3.6) and (3.7), it
follows that

N1

(
ε,G3, (X,T )n1

)
≤ 3

(
6eρn
ε/2

)2(Lcn+1)

3

(
3e

ε/(2ρn)

)2(Land+L
b
n+1)

= 9

(
12eρn
ε

)2(Lcn+1)(
6eρn
ε

)2(Land+L
b
n+1)

≤ 9

(
12eρn
ε

)2(Land+L
b
n+Lcn+2)

. (3.8)

Applying (3.2) yields

N1

(
ε,Fn, (X,T )n1

)
≤ N1

(
ε

Kn + 1
, Tρn(Lcn), (X,T )n1

)[
N1

(
ε

Kn + 1
,G3, (X,T )n1

)]Kn
.

Finally, by reporting (3.7) and (3.8) in the equation above, we obtain the upper
bound:

N1

(
ε,Fn, (X,T )n1

)
≤ 3

(
6eρn

ε/(Kn + 1)

)2(Lcn+1)
[

9

(
12eρn

ε/(Kn + 1)

)2(Land+L
b
n+Lcn+2)

]Kn

≤ 3

(
108eρn(Kn + 1)

ε

)2(Lcn+1)+2Kn(Land+L
b
n+Lcn+2)

.

�

3.2 Proof of Theorem 2.1
By Lemma 10.2 in Gyorfi, Kohler, Krzyzak, and Walk (2002), we have the in-
equality∫ ∣∣mn(x, t)−m(x, t)

∣∣2µ(dx, dt)

≤ inf
{f∈Fn : ‖f‖∞≤βn}

∫ ∣∣f(x, t)−m(x, t)
∣∣µ(dx, dt)

+ 2 sup
f∈TβnFn

∣∣∣∣ 1n
n∑
i=1

(
f(Xi, Ti)− Yi

)2 − E
{(
f(Xi, Ti)− Yi

)2}∣∣∣∣, (3.9)
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where the first term is the approximation error, and where the second term is a
uniform upper-bound over TβnFn of the estimation error. Since the union of the
Fn’s is dense in C(Rd × Rp) in the topology of uniform convergence on compact
sets, and sinceX and T are bounded by assumption, the union of theFn’s is dense
in L2(µ) for every µwith bounded support. Then it follows that the approximation
error of m by an element of {f ∈ Fn : ‖f‖∞ ≤ βn} converges to zero as
Kn, L

a
n, L

b
n, L

c
n, βn, ρn → ∞, and part (i) of the theorem will be proved if we

show that

sup
f∈TβnFn

∣∣∣∣ 1n
n∑
i=1

(
f(Xi, Ti)− Yi

)2 − E
{(
f(Xi, Ti)− Yi

)2}∣∣∣∣→ 0, (3.10)

a.s. as Kn, L
a
n, L

b
n, L

c
n, βn, ρn →∞. The same arguments hold for the family F̃n,

so that part (ii) of the theorem will be proved if we show that (3.10) is satisfied
with TβnFn replaced by TβnF̃n.

To bound the second term in the right hand side of (3.9), let us first define the set
Hn of functions by

Hn =
{
h : Rd×Rp×R 3 (x, t, y) 7→ |f(x, t)− y|21[−CY ;CY ](y) : f ∈ TβnFn

}
,

where 1[−CY ;CY ](.) is the characteristic function of the interval [−CY ;CY ]. Next,
we shall set Zi = (Xi, Ti, Yi), for i = 1, . . . , n.

For every f in TβnFn, we have |f(x, t)| ≤ βn. Hence for n large enough such that
CY ≤ βn,

|f(x, t)− y|21[−CY ;CY ](y) ≤ 4β2
n,

so that the range of each function h in Hn is included in the interval
[
0; 4β2

n

]
.

Then from the proof of Theorem 24 in Pollard (1984, p. 25), or Theorem 9.1 in
Gyorfi, Kohler, Krzyzak, and Walk (2002, p. 136), we obtain for any ε > 0 the
following inequality:

P

{
sup

f∈TβnFn

∣∣∣∣∣ 1n
n∑
i=1

|f(Xi, Ti)− Yi|2 − E
{
|f(X,T )− Y |2

}∣∣∣∣∣ > ε

}

= P

{
sup
h∈Hn

∣∣∣∣∣ 1n
n∑
i=1

h(Zi)− E
{
h(Z)

}∣∣∣∣∣ > ε

}

≤ 8EN1

(ε
8
,Hn, Z

n
1

)
exp

(
− nε2

128
(
4β2

n

)2
)
. (3.11)

12



Now we proceed to bound the covering number in (3.11). Given h1 and h2 inHn,
corresponding respectively to f1 and f2 in TβnFn, we have

1

n

n∑
i=1

|h1(Zi)− h2(Zi)| =
1

n

n∑
i=1

∣∣∣|f1(Xi, Ti)− Yi|2 − |f2(Xi, Ti)− Yi|2
∣∣∣ a.s.

≤ 4βn
1

n

n∑
i=1

|f1(Xi, Ti)− f2(Xi, Ti)|, (3.12)

since |f(x, t)| ≤ βn for every f in TβnFn, and since |Y | ≤ CY ≤ βn a.s. for n
large enough. Therefore, if f1, . . . , fN is aL1 ε-cover of TβnFn on (X1, T1), . . . , (Xn, Tn)
with

N = N1

(
ε, TβnFn, (X,T )n1

)
,

there exists a L1 2ε-cover f ′1, . . . , f
′
N of TβnFn on (X,T )n1 with f ′j ∈ TβnFn, for

all j = 1, . . . , n. Then using the inequality (3.12) we conclude that

N1

(ε
8
,Hn, Z

n
1

)
≤ N1

(
ε

64βn
, TβnFn, (X,T )n1

)
. (3.13)

Using Lemma 3.1 together with the fact thatN1

(
ε, TβnFn, (X,T )n1

)
≤ N1

(
ε,Fn, (X,T )n1

)
,

it follows that

P

{
sup

f∈TβnFn

∣∣∣∣∣ 1n
n∑
i=1

|f(Xi, Ti)− Yi|2 − E
{
|f(X,T )− Y |2

}∣∣∣∣∣ > ε

}

≤ 24

(
6912eβnρn(Kn + 1)

ε

)2(Lcn+1)+2Kn(Land+L
b
n+Lcn+2)

× exp

(
− nε2

2048β4
n

)
= 24 exp

{
− nδn

1−δ

β4
n

[
ε2

2048
−

2β4
n

[
Lcn + 1 +Kn(Land+ Lbn + Lcn + 2)

]
n

× log

(
6912βnρn(Kn + 1)

ε

)]}
, (3.14)

for some δ > 0.

13



Consequently, if

Kn →∞, Lan →∞, Lbn →∞, Lcn →∞, βn →∞, ρn →∞,

as n→∞ in such a way that

Knβ
4
n(Lan + Lbn + Lcn) log(βnρnKn)

n
→ 0 and

β4
n

n1−δ → 0,

for some δ > 0 as n→∞, we deduce from (3.14) that∑
n≥1

P

{
sup

f∈TβnFn

∣∣∣∣∣ 1n
n∑
i=1

|f(Xi, Ti)− Yi|2 − E
{
|f(X,T )− Y |2

}∣∣∣∣∣ > ε

}
<∞.

(3.15)
Part (i) of Theorem 2.1 then follows from the Borel-Cantelli Lemma.

To prove part (ii), it suffices to set Lan = 1 and Lbn = 1. Then one obtains (3.15)
from (3.14) if

Kn →∞, Lcn →∞, βn →∞, and ρn →∞,

as n→∞ in such a way that

Knβ
4
nL

c
n log(βnρnKn)

n
→ 0 and

β4
n

n1−δ → 0,

for some δ > 0 as n → ∞, which together with the Borel-Cantelli Lemma con-
cludes the proof of the second part of Theorem 2.1. �

Acknowledgment
This work was supported by the National Aeronautics and Space Administration
under Grant No. NNX08AF65A. The authors are indebted to an anonymous ref-
eree for a careful reading of the paper and insightful comments.

References
[1] Barron, A. (1993). Universal approximation bounds for superpositions of a

sigmoidal function. IEEE Transactions on Information Theory, Vol. 39, pp.
930-945.

14



[2] Burger, M. and Neubauer, A. (2001). Error bounds for approximation with
neural networks. Journal of Approximation Theory, Vol. 112, pp. 235-250.

[3] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal func-
tion Mathematics of Control, Signals, and Systems, Vol. 2, pp. 303-314.

[4] Fan, J. and Zhang, W. (1999). Statistical estimation in varying coefficients
models. The Annals of Statistics, Vol. 27, pp. 1491-1518.

[5] Fan, J. and Zhang, J.-T. (2000). Two-step estimation of functional linear
models with applications to longitudinal data. Journal of the Royal Statisti-
cal Society, Series B, Vol. 62, pp.303-322.

[6] Fan, J., Yao, Q., and Cai, Z. (2003). Adaptive varying-coefficient linear mod-
els. Journal of the Royal Statistical Society, Series B, Vol. 65, pp 57-80.

[7] Frouin, R. and Pelletier, B. (2007). Fields of nonlinear regression models for
atmospheric correction of satellite ocean-color imagery. Remote Sensing of
Environment, Vol. 111, pp. 450-465.

[8] Gyorfi, L., Kohler, M., Krzyzak, A., and Walk, H. (2002). A Distribution-
Free Theory of Nonparametric Regression. Springer-Verlag, New-York.

[9] Hastie, T. and Tibshirani, R. (1993). Varying coefficient models, Journal of
the Royal Statistical Society, Series B, Vol. 55, pp. 757-796.

[10] Hoffmann, M. and Lepski, O. (2002). Random rates in anisotropic regres-
sion. The Annals of Statistics, Vol. 30, pp. 325-358.

[11] Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward
networks are universal approximators. Neural Networks, Vol. 2, pp. 359-366.

[12] Kohler, M. and Krzyzak, A. (2005). Adaptive regression estimation with
multilayer feedforward neural networks. Nonparametric Statistics, Vol. 17,
pp. 891-913.

[13] Lin, V.Y. and Pinkus, A. (1993). Fundamentality of ridge functions. Journal
of Approximation Theory, Vol. 75, pp. 295-311.

[14] Maiorov, V. (1999). On best approximation by ridge functions. Journal of
Approximation Theory, Vol. 99, pp. 68-94.

15



[15] Pelletier, B. (2004). Approximation by ridge function fields over compact
sets. Journal of Approximation theory, Vol. 129, pp. 230-239.

[16] Pelletier, B. and Frouin, R. (2006). Remote sensing of phytoplankton
chlorophyll-a concentration by ridge function fields. Applied Optics, Vol.
45, pp784-798.

[17] Pelletier, B. and Frouin, R. (2004). Fields of nonlinear regression models for
inversion of satellite data. Geophysical Research Letters, Vol. 31, L16304,
doi 10.1029/2004GL019840.

[18] Pollard, D. (1984). Convergence of Stochastic Processes, Springer-Verlag,
New-york.

[19] Vapnik, V.N. and Chervonenkis, A.Y. (1971). On the uniform convergence
of relative frequencies of events to their probabilities. Theory of Probability
and its Applications, Vol. 16, pp. 264-280.

[20] Wong, H., Ip, W., and Zhang, R. (2008). Varying-coefficient single-index
model. Computational Statistics & Data Analysis, Vol. 52, pp. 1458-1476.

16


