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Abstract

Remote sensing of ocean color from space, a problem that consists in retrieving

spectral marine reflectance from spectral top-of-atmosphere reflectance, is consid-

ered as a collection of similar inverse problems continuously indexed by the angular

variables influencing the observation process. A general solution is proposed in the

form of a field of non-linear regression models over the set T of permitted values

for the angular variables, i.e., as a map from T to some function space. Each value

of the field is a regression model that performs a direct mapping from the top-of-

atmosphere reflectance to the marine reflectance. Since the spectral components of

the field take values in the same variable vector space, the retrievals in individual

spectral bands are not independent, i.e., the solution is not just a juxtaposition of

independent models for each spectral band. A scheme based on ridge functions is

developed to approximate this solution to an arbitrary accuracy, and is applied to

Preprint submitted to Remote Sensing of Environment 27 January 2006



the retrieval of marine reflectance in Case 1 waters, which optical properties are

only governed by biogenic content. The statistical models are evaluated on syn-

thetic data as well as actual data originating from the SeaWiFS instrument, taking

into account noise in the data. Theoretical performance is good in terms of accu-

racy, robustness, and generalization capabilities, suggesting that the function field

methodology might improve atmospheric correction in the presence of absorbing

aerosols and provide more accurate estimates of marine reflectance in productive

waters. When applied to SeaWiFS imagery acquired off California, the function

field methodology gives generally higher estimates of marine reflectance than the

standard SeaDAS algorithm, but the values are more realistic.

Key words: Ocean Color, Remote Sensing, Function Fields, Statistical Inverse

Problems.

1 Introduction

Standard algorithms to invert remotely sensed data over the oceans basically

proceed in two steps: (i) atmospheric correction that yields an estimation of

the marine reflectance (Gordon, 1978; Viollier et al., 1980; Gordon and Wang,

1994; Gordon, 1997; Fukushima et al., 1998; Antoine and Morel, 1999; Gao

et al., 2000), and (ii) inversion of the marine reflectance using bio-optical mod-

els (Gordon et al., 1988; O.Reilly et al., 1998; Morel and Maritorena, 2002).

The atmospheric correction has long been recognized as being a difficult and

critical operation, since the contribution of the water body may represent only

a small fraction (< 10%) of the measured signal (Gordon, 1978; Viollier et al.,
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1980). In some situations (i.e., absorbing aerosols, high chlorophyll content),

the expected errors in marine reflectance may go beyond the acceptable 5%

limit for biological applications. The uncertainties in atmospheric correction

propagate and yield, assuming that the bio-optical model is known, errors

in chlorophyll-a concentration that may reach 20% in the presence of little-

absorbing aerosols, and larger errors in the case of strongly absorbing aerosols

(Gordon, 1997).

The presence of measurement noise and of uncertainties in optical models,

associated with the fact that elements of the radiative transfer models are

based on inferences from in-situ data sets, anchors the inversion problem in a

statistical setting. Several algorithms using nonlinear regression methods have

been developed to perform a direct mapping between geophysical and exoge-

nous observable conditions. Such approaches have been used to retrieve the

concentrations of oceanic constituents, including phytoplankton chlorophyll-a,

dissolved organic matter, and suspended sediment, from the marine reflectance

(Keiner and Brown, 1999; Schiller and Doerffer, 1999; Gross et al., 2000),

and they have shown improvement over classic algorithms (e.g., band ratios).

Applying regression methodologies to drive directly inference about oceanic

variables from top-of-atmosphere reflectance is however more complex, due, of

course, to the variability induced by the atmosphere, but also to the depen-

dence of the reflectance on the angular geometry. This results in correlations,

trends, or even nonlinear dependencies between the regressors (i.e., the top-of-

atmosphere reflectance and the angular variables) that are generally difficult

to handle for the purpose of statistical modeling (Stahel, 2004, p. 181).

In a recent note, (Pelletier and Frouin, 2004) introduced a general statistical

model for inverting satellite data, that fits the ocean color problem as a special
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case, and where the peculiarity that the explanatory variables are influenced

by other, less informative conditioning variables is accounted for. The top-of-

atmosphere reflectance is considered separately from the angular variables in

the modeling. This approach is motivated by the following observation, and

we first introduce some notations. Let y be a geophysical variable of interest

(e.g., phytoplankton chlorophyll-a concentration, marine reflectance), let t be

the vector of angular variables that characterize the observation process (Sun

zenith angle, view zenith angle, and relative azimuth angle), and let x be

a vector of reflectance at d wavelengths. If we let xt denote a reflectance

acquired in the angular geometry t, then one may seek to retrieve the value

of y independently from measurements of xt1 or xt2 , for any two geometries

t1 6= t2. Thus inverting the top-of-atmosphere reflectance may be considered as

a continuum of inverse problems, one for each xt. This leads to a representation

of the solution as a function field over the set T of permitted values for the

angular variables. The underlying idea is to attach an inverse model to each

t which provides an estimation of y from xt, and where we demand that the

attachment be continuous.

The paper is organized as follows. Function fields and fields of nonlinear re-

gression models are defined in Section 2, with an emphasis on fields of linear

combinations of shifted ridge functions, selected for reasons of approximation

theory. The methodology is applied to the retrieval of marine reflectance, Case

1 waters, in Section 3. It is tested on actual satellite imagery from the Sea-

Viewing Wide Field-of-view Sensor (SeaWiFS) in Section 4. Conclusions and

a perspective for future work are given in Section 5.
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2 Fields of nonlinear regression models

The notations introduced above will be used here and in the remainder of the

paper, and y will designate indifferently a real variable or a vector of variables.

Consider a family of parameterized statistical models f(x; θn) performing a

mapping from R
d to some real vector space, where θn is either a scalar param-

eter or a vector of scalar parameters valued in a set Θn. Next consider using

one of these models to retrieve y from xt, for some fixed t. This can be written

as

y = f(xt; θn) + ǫ, (1)

where ǫ represents the residual of the modeling. At this stage, the task is to

infer a value of θn from several observations of xt and y, typically by minimiz-

ing a quadratic loss criterion. Now consider varying t by a slight amount ∆t,

such that xt+∆t is being measured. Then if the above model is satisfactory,

one might seek to retrieve y from xt+∆t by

y = f(xt+∆t; θn + ∆θn) + ǫ, (2)

for some change ∆θn in the parameters, that is to be inferred from the data.

The extension to all t in the set T leads to the following model, valid for all

t ∈ T :

y = f (xt; θn(t)) + ǫ, (3)

where θn(t) is a function of t, defined on T and valued in Θn. For some t0 ∈ T ,

the map f(.; θn(t0)) is the inverse model attached to t0; it is specified by the

parameter map θn(t) taken at t = t0.

The above display is in fact a particular case of a more general situation. The

idea of attaching an inverse model to each t, be it parameterized or not, can
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be made precise by the concept of a function field. A function field over a set

T is a map defined on T and valued in a space of functions, like for instance

the space C(X) of continuous real-valued functions on the set X. The space of

continuous fields over T of continuous functions on X is denoted by (C(X))T .

The value of a function field ζ ∈ C(X)T is the function ζ(t), which to each

x ∈ X associates the real number ζ(t)(x), i.e., ζ(t) is the model attached to t.

Under mild assumptions on the spaces X and T , there is the homeomorphism

C(X×T )
≈
→ C(X)T . This means that, (i) to each ζ ∈ C(X)T , there corresponds

the unique map ζ∗ ∈ C(X × T ) such that, for all t ∈ T and x ∈ X, we have:

ζ∗(x, t) = ζ(t)(x), (4)

and conversely, and that (ii) the relations ζ → ζ∗ and ζ∗ → ζ are continuous.

For modeling purposes, we shall be led to consider function fields valued in

some subset M of C(X), or in some nested sequence M0 ⊂ ... ⊂ Mn ⊂

Mn+1 ⊂ ... ⊂ C(X). The set of such continuous function fields is denoted by

MT , or by MT
n . Consider a set Mn of functions parameterized by a vector θn

valued in Θn. There is the map in carrying a parameter vector θn to a function

in Mn, say f(.; θn)
def
= in(θn). A map ξn : T → Θn defines a function field ζ by

ζ = in ◦ ξn. Using a parameter map ξn, the model in Eq. (3) may be written

as a function field by letting:

f(x; θn(t))
def
= f(x; ξn(t)) (5)

= (in ◦ ξn)(t)(x) (6)

= ζ(t)(x). (7)

The function field formalism allows one to study the mathematical properties

of these models, including density and parameterization. In particular, it is

important to note that for an arbitrary continuous function field ζ ∈ MT
n ,
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the existence and uniqueness of a continuous map ξn : T → Θn such that

ζ = in ◦ ξn is not guaranteed. This depends on the set Mn, on how Mn is

parameterized, i.e., on the properties of in. For details, see (Pelletier, 2004).

In the absence of information on the nature of the inverse relationship between

y, x, and t, there is an interest in considering dense sequences of sets, i.e.,

such that ∪nMn = C(X), since in this case, we have ∪nMT
n = (C(X))T

(Pelletier, 2004). The sets spanned by functions of the ridge form have this

property. A ridge function on Rd is a function of the form h(a.x), where h is

a function on R, and where a.x is the standard inner product on Rd. Ridge

function approximation refers to approximation by linear combinations of n

ridge functions, for some integer n, i.e., by functions of the form

f(x) =
n

∑

i=1

cih(ai.x), (8)

or by linear combinations of shifted ridge functions:

f(x) =
n

∑

i=1

cih(ai.x + bi), (9)

where the scalars bi are the shifts. The ai, bi, and ci, constitute the parameter

vector θn, taking values in the set Θn
def
=

∏n
i=1 Rd×R×R. The set spanned by

functions of the form given by Eq. (9) will be denoted by Mn, and the function

fields taking values in it will be called ridge function fields. This set is over-

parameterized (in is not injective), but ridge function fields have the following

interesting property (Pelletier, 2004): the union over n of ridge function fields

induced by continuous parameter maps ξn : T → Θn is dense in C(X)T .

Therefore, ridge function fields are used to define statistical models explaining

y from x and t. Introducing Eq. (9) in Eq. (3) leads to the following statistical

model, expressed in its expanded form:
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y = ζ(t)(x) + ǫ (10)

=
n

∑

i=1

ci(t)h(ai(t).x + bi(t)) + ǫ. (11)

Adjusting the statistical model to a data set D = {(xi, ti, yi); i = 1, ..., N}

consists in estimating the free parameters of the field, i.e., the maps ai(t),

bi(t), and ci(t). Since these maps have infinitely many degrees of freedom, we

proceed by multi-linear interpolation on a regular grid covering T for their

constructions. The adjustment is considered in the least square sense, and the

minimization of the mean squared error is carried out by use of a dedicated

stochastic gradient descent algorithm.

3 Retrieval of marine reflectance

A statistically significant data set of about 62,000 joint samples of top-of-

atmosphere (TOA) and marine reflectance was generated using a coupled

ocean-atmosphere radiative transfer code (Vermote et al., 1997). This code

takes into account the essential physics of the problem, namely gaseous absorp-

tion, scattering by molecules, scattering and absorption by aerosols, molecule-

aerosol interactions, reflection by the surface, molecule-surface and aerosol-

surface interactions, and backscattering by whitecaps and the water body.

The top-of-atmosphere reflectance was simulated in spectral bands centered

at 412, 443, 490, 510, 555, 670, 765, and 865 nm (case of SeaWiFS) and cor-

rected for molecular effects. The marine reflectance, ρw, defined as the product

of π and water-leaving radiance normalized by surface irradiance, was simu-

lated according to (Morel and Maritorena, 2002) in the first 6 spectral bands

(visible). It was assumed to be equal to zero in the other spectral bands (near-

infrared). The reflectance model, valid for Case 1 waters, only depends on
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chlorophyll-a concentration, which was varied from 0.03 to 30 mgm−3. The

marine reflectance was considered isotropic in the simulations. This is not

limiting since a unique statistical model is attached to each angular geometry

(see below). In other words, the inverse problem would not be more com-

plicated to solve if bidirectional characteristics were included. The data set

encompasses the major sources of variability and includes three aerosol mod-

els in varied mixtures (maritime, continental, urban). Specifically, Sun and

view zenith angles were varied from 0 and 60 degrees and 0 to 50 degrees,

respectively, relative azimuth angles from 0 to 180 degrees, wind speed of 0

to 15 ms−1, and aerosol optical thickness from 0.05 to 0.5. All the cases with

Sun glint reflectance above 0.04 were discarded. For each remaining case, the

coupled radiative transfer code was run once with molecules and aerosols and

a non-black water body and once with only molecules and a black body. The

difference between the output of the two runs, i.e., a TOA reflectance corrected

for molecular effects, was used to construct the function fields.

The synthetic data set was randomly split into two sub data sets D0
e and D0

v,

used for adjusting and validating the statistical inverse models, respectively.

Noisy versions of the data sets, denoted by Dν
e and Dν

v , of D0
e and D0

v were

also created for robustness assessments, by adding some amount of noise to

the TOA reflectance. The selected noise is expressed as the sum of correlated

and uncorrelated components, and is defined by:

x̃ = x + νcx +
(

νuc
1 x1, ..., νuc

8 x8
)t

, (12)

where x̃ is a noisy version of a TOA reflectance x, and where νc, νnc
1 , ..., νnc

8

are random variables uniformly distributed in the interval [− ν
200

; ν
200

], where ν

is the total amount of noise, in percent.
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Now let x ∈ R
d and y ∈ R

d′ be vectors of top-of-atmosphere and marine re-

flectance, respectively. Let t = (cos θs, cos θv, cos ∆ϕ)t be the vector of cosines

of the angular variables, taking values in the set T = [1
2
; 1] × [1

2
; 1] × [−1; 1].

Let

E(a1, ..., an, b1, ..., bn) = span {h(a1.x + b1), ..., h(an.x + bn)}, (13)

where h : R → R, i.e., E(a1, ..., an, b1, ..., bn) is the vector space spanned by

the linear combinations of the h(ai.x + bi). For the retrieval of y from x, we

consider function fields ζ : T → Ed′(a1, ..., an, b1, ..., bn) such that

ζ(t)j(x) =
n

∑

i=1

c
j
i (t)h(ai.x + bi), (14)

for j = 1, ..., d′, and the statistical model relative to the jth component of y is

written as

yj = ζ(t)j(x) + ǫj. (15)

The functions c
j
i are defined by multi-linear interpolation on a 2×2×3 regular

grid covering T , i.e., they are piecewise-differentiable functions, each of whose

depends on 12 scalars. These scalars, together with the ai and the bi constitute

the free parameters of the model. The model is adjusted by minimizing the

sum of the squared errors E on D0
e defined by

E = |D0
e |

−1
∑

(xk,tk,yk)∈D0
e

‖ζ(tk)(xk) − yk‖
2, (16)

where ‖.‖ is the usual Euclidean norm on R
d′ . In practice, the components

of y are normalized linearly between −1 and 1. One might think of ζ as a

d′-tuple of fields of real-valued functions over T . But note that since the d′

components of ζ are taking values in the same variable vector space (i.e.,

in E(a1, ..., an, b1, ..., bn)), this approach is not equivalent to d′ independent

retrievals, on a component per component basis. The minimization of E is
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carried out using a stochastic gradient descent procedure.

Via the simulations, the sufficient number of n = 15 basis functions was ob-

tained, and three fields ζ0, ζ1, and ζ2 of this kind, i.e., with n = 15, were

constructed. The first one, ζ0, was adjusted on D0. In the case of ζ1 and ζ2,

we added a noise amount of 1% and 2%, respectively, to the TOA reflectance

during the execution of the minimization procedure, where the added noise

satisfies Eq. (12). Note that this is not equivalent to adjusting the fields on D1
e

and D2
e . The noise amount corresponds typically to 10 and 20% of the marine

signal, i.e., of the signal to retrieve.

The theoretical performance of the regression models is summarized in Ta-

ble. 1, which gives, on a component-per-component basis, the Root Mean

Squared error (RMS) and the Relative Root Mean Squared error (RMSR) of

ζν evaluated on Dν′

e and Dν′′

v , for all combinations of ν, ν ′, ν ′′ = 0, 1, 2. These

statistics show that the fields present good validation properties, and that the

robustness to input noise is improved by the addition of some amount of noise

during their construction. In parallel, it may be remarked that, for a noise

level of ν% on the TOA reflectance, the best retrievals are achieved by ζν .

This illustrates the importance of the noise distribution, defined prior to the

construction of the models. This point will be further discussed in the next

section. The marine reflectance estimations are accurate over the whole range

of values, as depicted by Fig. (1) and Fig. (2), which give plots of estimated

versus expected reflectance. For the model ζ0 adjusted on D0, the RMSR

ranges from 0.7% at 510 nm to 3.3% at 412 nm, and for the model ζ1 adjusted

on D1 from 1.0% and 4.1%, respectively. The average error increases with the

aerosol optical thickness (τa). More precisely, the residuals spread themselves

with increasing τa, as shown in the plots of several conditional quantiles of

11



the residuals distributions as a function of τa (Fig. 3). However, the errors are

weakly dependent on the aerosol type and no trends are revealed, as evidenced

in Fig. (4).

Ratios of marine reflectance are commonly used to estimate chlorophyll-a con-

centration (e.g., O’Reilly et al., 1998). The theoretical relation between ratios

of reflectance at 443 and 555 nm and at 490 and 555 nm is slightly degraded

when using the reflectance estimated by the function fields (Fig. 5). The re-

sulting RMS in chlorophyll-a concentration, computed in natural logarithm

scale, which gives approximately the fractional error, is only 0.07 (7%) and

0.04 (4%), respectively, when using ζ0 on D0, and 0.10 (10%) and 0.09 (9%)

when using ζ1 on D1 (Fig. 6). Unlike the ratio at 443 and 555 nm, which yields

larger relative errors at high chlorophyll-concentration, the ratio at 490 and

555 nm exhibits similar accuracy in the entire range of chlorophyll-a concentra-

tion. This ratio, therefore, is preferred when using function field methodology

to retrieve marine reflectance.

4 Application to SeaWiFS imagery

The function field methodology was applied to a SeaWiFS image acquired on

November 19, 2002 (day 323) above Southern California. For this image, which

contains above 78,000 useful pixels, the chlorophyll-a concentration ([Chl-a])

ranged from 0.05 to 5 mgm−3, as retrieved by the SeaDAS algorithm, and was

spatially distributed in typical marine structures, with relatively high values

near the coast and low values offshore. The SeaDAS aerosol optical thickness

was generally low, with a maximum value of about 0.1 at 865 nm. Surface

wind was calm everywhere, with speed values of less than 5 ms−1. The exper-
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imental procedure included the following steps. First, the marine reflectance

was retrieved from the SeaWiFS TOA reflectance with a function field, of

the kind described in Section 2. Second, the retrieved marine reflectance was

used to derive [Chl-a] by applying the SeaDAS bio-optical algorithm based

on reflectance ratios. Finally, the [Chl-a] values obtained in step 2 were com-

pared with those obtained from marine reflectance retrieved with the SeaDAS

atmospheric correction algorithm.

In a first bunch of experiments, the three fields ζν presented above, con-

structed with up to 2% of noise, were used to retrieve the marine reflectance.

The function field values were substantially different, generally higher than

the corresponding SeaDAS values, yielding unrealistic [Chl-a] estimates. More

specifically, the root-mean-squared differences with respect to SeaDAS were

above 78% for those fields (best result obtained for ζ2). This is explained by

the large level of noise on the TOA reflectance, which was estimated by plug-

ging into the radiative transfer code the SeaDAS values for both [Chl-a] and

aerosols parameters, and by comparing the results with the actual (i.e., mea-

sured) SeaWiFS TOA reflectance. Since the SeaDAS retrievals are consistent

with the measured TOA reflectance, the differences in TOA reflectance reflect

differences in radiative transfer modeling. At 412 nm, for example, the root-

mean-squared difference between simulated and measured TOA reflectance

exceeded 14%. Such large differences obviously cannot be compensated by a

general noise scheme, suggesting that the noise distribution should be taken

into account in the construction of the function fields, which was accomplished

as follows.

Based on 2000 pixels randomly selected in the image, an estimation of the noise

distribution was inferred by using the plug-in approach just described. More
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precisely, the empirical distribution Pn = 1
n

∑n
i=1 δei

was considered, where

ei ∈ R
d is the vector of difference between the measured and computed TOA

reflectance for the ith pixel, and where δx is the probability distribution that is

degenerate at x. Using Pn as the noise distribution, a function field ζ∗ of the

same characteristics as the fields ζν was constructed. The marine reflectance

retrieved by ζ∗ is displayed in Fig. (7). In the productive waters North of the

Channel Islands (upper left part of the images, values are lower than in the

surrounding waters at wavelengths below 510 nm, where phytoplankton ab-

sorption is effective, and higher above 510 nm, where particle backscattering

dominates. Compared with the marine reflectance retrieved by SeaDAS, dis-

played in Fig. (8) with the same color table, the marine reflectance retrieved

by ζ∗ is generally higher. The SeaDAS values are sometimes negative at 412

and 443 nm, especially near the coast, and spatial variability is larger for

SeaDAS at 510 nm. The differences between the marine reflectance obtained

from SeaDAS and ζ∗ may also be seen on the density estimates in Fig. (9).

On average the marine reflectance obtained from ζ∗ is higher by 0.0164 at 412

nm, 0.0093 at 443 nm, 0.0037 at 490 nm, 0.0010 at 510 nm, 0.0009 at 555

nm, and 0.0002 at 670 nm. The values are more narrowly distributed with ζ∗,

especially at 510 nm, which may be explained, at least partly, by the averaged

bio-optical model used in the construction of ζ∗, which does not include phyto-

plankton type variability. The SeaDAS atmospheric correction algorithm, on

the other hand, does not make any assumption about bio-optical properties

of the water body. Plots of 1,000 marine spectra retrieved by SeaDAS (top

panel) and by ζ∗ (bottom panel) from the same TOA reflectance are repro-

duced in Fig. (10). Clearly ζ∗ improves the marine reflectance estimation over

SeaDAS, as the marine spectra are much more realistic than the SeaDAS ones.

More specifically, they agree with the model of (Morel and Maritorena, 2002),
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known to be valid in the study region (Mitchell and Kahru, 1998; Kahru and

Mitchell, 1999). Nevertheless, the SeaDAS [Chl-a] is globally validated and

may be reasonably trusted, even in cases of large errors in marine reflectance

(Hooker and McClain, 2000; McClain et al., 2004).

The resulting [Chl-a] image is given in Fig. (11). In comparison with SeaDAS,

the [Chl-a] values obtained by ζ∗ are lower on average, with a negative bias of

−13.8%. The two spatial fields differ by 19.6% when measured with the root-

mean-squared error in natural logarithm, which corresponds approximately to

the root-mean-squared fractional error. The relative differences are large in

magnitude in the clearest waters (higher values with ζ∗) and in the most pro-

ductive waters (lower values with ζ∗). The 19.6% difference, however, does not

exceed the root-mean-squared uncertainty attached to the SeaDAS processing

chain, recently evaluated at 33% (Werdell and Bailey, 2005). It may also be

noted that the coherence of the retrieved spatial fields is rather good, not only

individually, but also when comparing the locations of the marine structures

in the image. Furthermore, the spatial fields of marine reflectance retrieved

by the non-linear regression models are less noisy than those obtained from

the SeaDAS algorithm, especially at 555 and 670 nm (see Fig. (7) and Fig.

(8)). Hence, in this case of large levels of noise, using an appropriate noise

distribution in the construction of a function field allows one to obtain a real-

istic marine reflectance that leads to a chlorophyll-a concentration comparable

with the SeaDAS value.
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5 Conclusions

Fields of non-linear regression models emerge as solutions to a continuum of

similar statistical inverse problems. This formulation of the remote-sensing

problem, that does involve explanatory covariates influenced by the angular

geometry, allows one to de-correlate the useful information from the effect of

the observation process. In this sense, the function fields presented herein well

match the physical characteristics of the problem, while taking benefit from

an efficient statistical modeling technique, namely nonlinear regression. This

probably explains the good theoretical results, in terms of accuracy, robust-

ness, and in particular generalization, obtained with this methodology for the

retrieval of the marine reflectance. In particular, the retrievals are accurate

over the entire range of marine reflectance and in the presence of strongly

absorbing aerosols.

When applied to actual SeaWiFS data, the function fields significantly im-

proved the marine reflectance estimations with respect to SeaDAS, providing

more realistic values, especially in the blue. As described above, the func-

tion field construction required an estimation of the noise distribution. Indeed

this is necessary only because the noise level is large in this case. For noise

levels up to several percent, resorting to an estimation of the noise distribu-

tion may be avoided by using a general noise scheme, with correlated and

uncorrelated components, as revealed by the experiments on synthetic data.

Nevertheless in any case, using an estimated noise distribution would certainly

improve performance, as the fields approximate the conditional means of one

geophysical variable (or vector) given the TOA reflectance. Thus studying the

noise statistical properties, where noise is to be understood as overall differ-
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ence between measurements from one given instrument and predictions from

one given radiative transfer code, constitutes an interesting and important

perspective. In this direction, one idea would be to make an inference on the

basis of concomitant in-situ measurements of atmospheric and oceanic param-

eters and satellite reflectance. Naturally, this would require the collected data

to be statistically significant, and therefore a plug-in approach may represent

a reasonable alternative.

In this study, we considered the simultaneous retrieval of the marine re-

flectance at 6 wavelengths by adjusting a field of nonlinear regression models

on a simulated data set. In the generation of this synthetic data, we used a

marine reflectance model that solely depends on the chlorophyll-a concentra-

tion, so the complexity of the problem could have been reduced by directly

estimating the chlorophyll-a concentration, as addressed in our earlier work

(Pelletier and Frouin, 2005). There is however an interest in developing esti-

mation methodologies for the marine reflectance, even in this simple case. The

reason is well known: the marine reflectance might give access to other vari-

ables than chlorophyll-a concentration, for example yellow substance absorp-

tion and sediment concentration. In this direction, the function field method-

ology appears to have the potential for improving the quality of the marine

reflectance retrievals in optically complex, i.e., Case 2 waters compared with

existing techniques. Of course, accuracy will be governed by the bijective char-

acter of the relation between TOA reflectance and marine reflectance. In this

context, there is the especially interesting question to determine whether or

not a direct estimation of one geophysical variable of interest is more efficient

than a 2-step estimation, i.e., by passing via the marine reflectance.
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Field ζ0

λ (nm) 412 443 490 510 555 670

D0
e RMS 4.3.10−4 2.3.10−4 0.7.10−4 0.3.10−4 0.5.10−4 0.2.10−4

RMSR (%) 2.73 1.71 0.64 0.38 0.81 2.04

D0
v RMS 4.4.10−4 2.3.10−4 0.7.10−4 0.3.10−4 0.5.10−4 0.2.10−4

RMSR (%) 2.92 1.81 0.67 0.40 0.80 2.04

D1
e RMS 10.6.10−4 6.3.10−4 2.3.10−4 1.4.10−4 1.6.10−4 0.7.10−4

RMSR (%) 5.86 4.46 2.54 1.74 2.22 5.81

D1
v RMS 10.7.10−4 6.4.10−4 2.4.10−4 1.4.10−4 1.6.10−4 0.8.10−4

RMSR (%) 6.21 4.69 2.67 1.81 2.24 5.59

D2
e RMS 19.9.10−4 12.0.10−4 4.5.10−4 2.7.10−4 3.0.10−4 1.5.10−4

RMSR (%) 10.89 8.41 4.86 3.37 4.25 12.64

D2
v RMS 19.6.10−4 11.8.10−4 4.6.10−4 2.8.10−4 3.1.10−4 1.5.10−4

RMSR (%) 11.34 8.68 5.05 3.52 4.23 12.16

Field ζ1

D0
e RMS 5.9.10−4 3.2.10−4 1.0.10−4 0.5.10−4 0.7.10−4 0.3.10−4

RMSR (%) 3.00 2.05 0.99 0.64 1.04 2.43

D0
v RMS 6.0.10−4 3.2.10−4 1.0.10−4 0.5.10−4 0.7.10−4 0.3.10−4

RMSR (%) 3.33 2.22 1.05 0.68 1.04 2.39

D1
e RMS 8.4.10−4 4.8.10−4 1.6.10−4 0.8.10−4 1.2.10−4 0.5.10−4

RMSR (%) 4.08 3.02 1.62 1.02 1.68 4.00

D1
v RMS 8.5.10−4 4.9.10−4 1.7.10−4 0.9.10−4 1.2.10−4 0.5.10−4

RMSR (%) 4.15 3.09 1.69 1.07 1.71 3.92

D2
e RMS 13.5.10−4 8.0.10−4 2.8.10−4 1.4.10−4 2.0.10−4 0.9.10−4

RMSR (%) 6.29 4.89 2.71 1.67 2.85 6.77

D2
v RMS 13.2.10−4 7.8.10−4 2.8.10−4 1.4.10−4 2.1.10−4 0.9.10−4

RMSR (%) 7.18 5.27 2.82 1.74 2.82 6.71

Field ζ2

D0
e RMS 6.7.10−4 3.7.10−4 1.3.10−4 0.7.10−4 0.9.10−4 0.4.10−4

RMSR (%) 3.82 2.56 1.32 0.89 1.31 3.62

D0
v RMS 6.7.10−4 3.7.10−4 1.3.10−4 0.7.10−4 1.0.10−4 0.4.10−4

RMSR (%) 4.01 2.68 1.40 0.95 1.34 3.57

D1
e RMS 8.5.10−4 4.9.10−4 1.7.10−4 0.9.10−4 1.3.10−4 0.5.10−4

RMSR (%) 4.60 3.27 1.75 1.13 1.76 4.49

D1
v RMS 8.6.10−4 5.0.10−4 1.8.10−4 0.9.10−4 1.3.10−4 0.6.10−4

RMSR (%) 4.76 3.40 1.86 1.20 1.83 4.59

D2
e RMS 12.5.10−4 7.4.10−4 2.7.10−4 1.3.10−4 1.9.10−4 0.9.10−4

RMSR (%) 6.42 4.83 2.64 1.62 2.72 6.63

D2
v RMS 12.3.10−4 7.4.10−4 2.7.10−4 1.4.10−4 2.0.10−4 0.9.10−4

RMSR (%) 6.72 5.02 2.78 1.71 2.70 6.49
Table 1
Root Mean Squared error (RMS) and Root Mean Squared Relative error (RMSR)
for the models ζ0, ζ1, and ζ2, evaluated on the construction and validation sets (D0

e

and D0
v), and on 1% and 2% noisy versions of them (D1

e , D
1
v , D

2
e , and D2

v).
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Fig. 1. Expected versus estimated marine reflectance for model ζ0 on non-noisy

data.
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Fig. 2. Expected versus estimated marine reflectance for model ζ1 on 1%-noisy data.
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Fig. 3. Conditional quantiles (of order 0.1, 0.25, 0.5, 0.75, and 0.9) of the residual

distributions as a function of the aerosol optical thickness for model ζ1 applied on

1%-noisy data.
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Fig. 4. Conditional quantiles (of order 0.1, 0.25, 0.5, 0.75, and 0.9) of the residual

distributions at 412 and 555 nm as a function of the proportion of one aerosol model

in a mixture of two for model ζ1 applied on 1%-noisy data.
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Fig. 5. Ratios ρw(443)/ρw(555) (top row) and ρw(490)/ρw(555) (bottom row) as a

function of chlorophyll-a concentration for theoretical reflectance (left column), for

reflectance estimated by ζ0 from non-noisy data (middle column), and for reflectance

estimated by ζ1 from 1%-noisy data.
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Fig. 6. Estimated versus expected chlorophyll-a concentration for ratios

ρw(443)/ρw(555) (left column) and ρw(490)/ρw(555) (right column), when ma-

rine reflectance is estimated by ζ0 from non-noisy data (top row) and by ζ1 from

1%-noisy data (bottom row).
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Fig. 7. Marine reflectance ρw estimated by ζ∗ for SeaWiFS imagery acquired on

November 19, 2002 over Southern California.
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Fig. 8. Same as Fig. 7, but marine reflectance ρw estimated by SeaDAS.
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Fig. 9. Density estimates of marine reflectance retrieved by SeaDAS (dashed lines)

and by ζ∗ (solid lines).
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Fig. 10. 1000 randomly selected marine reflectance spectra retrieved by SeaDAS

(top) and ζ∗ (bottom).
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Fig. 11. Chlorophyll-a concentration [Chl-a] from SeaDAS (top left) and ζ∗ (top

right), normalized difference between ζ∗ and SeaDAS [Chl-a] (lower left), and den-

sity estimates of SeaDAS [Chl-a] (dashed line) and ζ∗ [Chl-a] (lower right).
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